A comparative study on PMMA-TiO2 and PMMA-ZrO2 protective coatings

dc.contributor.authorHarb, Samarah V. [UNESP]
dc.contributor.authorTrentin, Andressa [UNESP]
dc.contributor.authorUvida, Mayara C. [UNESP]
dc.contributor.authorMagnani, Marina [UNESP]
dc.contributor.authorPulcinelli, Sandra H. [UNESP]
dc.contributor.authorSantilli, Celso V. [UNESP]
dc.contributor.authorHammer, Peter [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-12T02:31:12Z
dc.date.available2020-12-12T02:31:12Z
dc.date.issued2020-03-01
dc.description.abstractThe covalent conjugation between the phases of organic-inorganic nanocomposites and the careful tuning of the proportion of the colloidal precursors are essential to yield homogeneous, cross-linked and dense coatings that are able to protect metallic alloys against corrosion. In this work, the sol-gel route was used to prepare organic-inorganic hybrid coatings based on poly(methyl methacrylate) (PMMA) covalently bonded to TiO2 or ZrO2 nanoparticles through the coupling agent 2-hydroxyethyl methacrylate (HEMA), applied for the first time as anticorrosive coatings for metallic alloy. Different formulations of the hybrids were prepared by varying the proportion of titanium isopropoxide or zirconium propoxide, methyl methacrylate and benzoyl peroxide, and applied on carbon steel by dip-coating. The optimized parameters yielded for the two hybrids transparent and homogeneous coatings, with a thickness less than 3 μm, low surface roughness (<1.8 nm) and elevated thermal stability (>200 °C). Electrochemical impedance spectroscopy assays showed that PMMA-ZrO2 and PMMA-TiO2 coatings exhibit corrosion resistance up to 10 GΩ cm2, 7 orders of magnitude higher than the bare carbon steel, remaining essentially unchanged for PMMA-TiO2 during 14 days exposure to 3.5 % saline solution. The results suggest that PMMA-ZrO2 and PMMA-TiO2 nanocomposites are suitable for application as environmentally compliant highly efficient anticorrosive coatings.en
dc.description.affiliationSão Paulo State University (UNESP) Institute of Chemistry
dc.description.affiliationUnespSão Paulo State University (UNESP) Institute of Chemistry
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdCNPq: 307905/2018-7
dc.description.sponsorshipIdCNPq: 421081/2016-3
dc.description.sponsorshipIdCNPq: 424133/2016-4
dc.identifierhttp://dx.doi.org/10.1016/j.porgcoat.2019.105477
dc.identifier.citationProgress in Organic Coatings, v. 140.
dc.identifier.doi10.1016/j.porgcoat.2019.105477
dc.identifier.issn0300-9440
dc.identifier.lattes5584298681870865
dc.identifier.orcid0000-0002-8356-8093
dc.identifier.scopus2-s2.0-85076239107
dc.identifier.urihttp://hdl.handle.net/11449/201387
dc.language.isoeng
dc.relation.ispartofProgress in Organic Coatings
dc.sourceScopus
dc.subjectCorrosion protection
dc.subjectFunctional nanocomposite
dc.subjectOrganic-inorganic hybrid
dc.subjectSol-gel process
dc.titleA comparative study on PMMA-TiO2 and PMMA-ZrO2 protective coatingsen
dc.typeArtigo
unesp.author.lattes5584298681870865[6]
unesp.author.orcid0000-0002-8356-8093[6]
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Química, Araraquarapt
unesp.departmentFísico-Química - IQARpt

Arquivos