Electron Transport in Dye-Sensitized Solar Cells Based on ZnO Nanotubes: Evidence for Highly Efficient Charge Collection and Exceptionally Rapid Dynamics
Nenhuma Miniatura disponível
Data
2009-04-23
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Amer Chemical Soc
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
Dye-sensitized solar cells based on ordered arrays of polycrystalline ZnO nanotubes, 64 mu m in length, are shown to exhibit efficient electron collection over the entire photoanode array length. Electrochemical impedance spectroscopy, open-circuit photovoltage decay analysis, and incident-photon-to-current efficiency spectra are used to quantify charge transport and lifetimes. Despite the relatively thick photoanode, the charge extraction time is found to be faster than observed in traditional TiO(2) nanoparticle photoanodes. If the extraction dynamics are interpreted as diffusive, effective electron diffusion coefficients of up to 0.4 cm(2) s(-1) are obtained, making these pseudo-ID photoanodes the fastest reported for an operating DSC to date. Rapid electron collection is of practical significance because it should enable alternative redox shuttles, which display relatively fast electron-interception dynamics, to be employed without significant loss of photocurrent.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Journal of Physical Chemistry A. Washington: Amer Chemical Soc, v. 113, n. 16, p. 4015-4021, 2009.