Publicação: Two-dimensional nonlinear map characterized by tunable Lévy flights
Carregando...
Data
2014-10-27
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto![Acesso Aberto](assets/repositorio/images/logo_acesso_aberto_simples.png)
![Acesso Aberto](assets/repositorio/images/logo_acesso_aberto_simples.png)
Resumo
After recognizing that point particles moving inside the extended version of the rippled billiard perform Lévy flights characterized by a Lévy-type distribution P(l)∼l-(1+α) with α=1, we derive a generalized two-dimensional nonlinear map Mα able to produce Lévy flights described by P(l) with 0<α<2. Due to this property, we call Mα the Lévy map. Then, by applying Chirikov's overlapping resonance criteria, we are able to identify the onset of global chaos as a function of the parameters of the map. With this, we state the conditions under which the Lévy map could be used as a Lévy pseudorandom number generator and furthermore confirm its applicability by computing scattering properties of disordered wires.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 90, n. 4, 2014.