Two-dimensional nonlinear map characterized by tunable Lévy flights
Carregando...
Data
2014-10-27
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto
Resumo
After recognizing that point particles moving inside the extended version of the rippled billiard perform Lévy flights characterized by a Lévy-type distribution P(l)∼l-(1+α) with α=1, we derive a generalized two-dimensional nonlinear map Mα able to produce Lévy flights described by P(l) with 0<α<2. Due to this property, we call Mα the Lévy map. Then, by applying Chirikov's overlapping resonance criteria, we are able to identify the onset of global chaos as a function of the parameters of the map. With this, we state the conditions under which the Lévy map could be used as a Lévy pseudorandom number generator and furthermore confirm its applicability by computing scattering properties of disordered wires.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 90, n. 4, 2014.