Two-dimensional nonlinear map characterized by tunable Lévy flights

Imagem de Miniatura

Data

2014-10-27

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

After recognizing that point particles moving inside the extended version of the rippled billiard perform Lévy flights characterized by a Lévy-type distribution P(l)∼l-(1+α) with α=1, we derive a generalized two-dimensional nonlinear map Mα able to produce Lévy flights described by P(l) with 0<α<2. Due to this property, we call Mα the Lévy map. Then, by applying Chirikov's overlapping resonance criteria, we are able to identify the onset of global chaos as a function of the parameters of the map. With this, we state the conditions under which the Lévy map could be used as a Lévy pseudorandom number generator and furthermore confirm its applicability by computing scattering properties of disordered wires.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 90, n. 4, 2014.

Itens relacionados

Coleções