What Determines Electrochemical Surface Processes on Carbon-Supported PdAu Nanoparticles?

dc.contributor.authorGallo, Irã B. C. [UNESP]
dc.contributor.authorCarbonio, Emilia A.
dc.contributor.authorVillullas, Hebe M. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionBESSY-II
dc.date.accessioned2018-12-11T16:52:12Z
dc.date.available2018-12-11T16:52:12Z
dc.date.issued2018-03-02
dc.description.abstractSupported bimetallic nanoparticles have good activities in heterogeneous catalysis and electrocatalysts. Among those systems, PdAu shows improved stability and enhanced catalytic activity toward electrochemical reactions such as oxygen reduction, formic acid oxidation, and hydrogen evolution. The aim of this work was to study comprehensively the influence of ligand and ensemble effects on surface processes, such as oxide formation/reduction, oxidation of adsorbed CO, and adsorption of hydrogen, taking place on carbon-supported PdAu nanoparticles of different compositions. Toward that end, we thoroughly characterized the properties of PdAu/C catalysts with nominal Au contents of 20-50 atom % prepared by the same procedure and having similar average particle diameters. The combination of results obtained by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) indicates that nanoparticles had Pd-enriched surfaces and a Au-rich interior. X-ray absorption spectroscopy (XAS) measurements around the Pd L3 edge evidenced that Au promotes an increase in the electronic occupation of the Pd 4d band, consistent with XPS results showing varying amounts of surfacelike and bulklike Pd oxide and metallic Pd. We show herein that ligand effects determine the formation of a Pd oxide layer on PdAu/C catalysts and ensemble effects govern hydrogen and CO adsorption. CO oxidation is delayed as the Au content increases as result of the decreasing availability of oxygen-containing species.en
dc.description.affiliationUniversidade Estadual Paulista (UNESP) Instituto de Química
dc.description.affiliationHelmholtz-Zentrum Berlin für Materialien und Energie BESSY-II, Albert-Einstein-Straße 15
dc.description.affiliationUnespUniversidade Estadual Paulista (UNESP) Instituto de Química
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdCNPq: 142497/2013-4
dc.description.sponsorshipIdFAPESP: 2014/12255-6
dc.format.extent1818-1827
dc.identifierhttp://dx.doi.org/10.1021/acscatal.7b03734
dc.identifier.citationACS Catalysis, v. 8, n. 3, p. 1818-1827, 2018.
dc.identifier.doi10.1021/acscatal.7b03734
dc.identifier.issn2155-5435
dc.identifier.scopus2-s2.0-85042868368
dc.identifier.urihttp://hdl.handle.net/11449/170732
dc.language.isoeng
dc.relation.ispartofACS Catalysis
dc.relation.ispartofsjr4,921
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectbimetallic nanoparticles
dc.subjectCO oxidation
dc.subjectensemble effects
dc.subjecthydrogen adsorption
dc.subjectligand effects
dc.subjectoxide formation/reduction
dc.titleWhat Determines Electrochemical Surface Processes on Carbon-Supported PdAu Nanoparticles?en
dc.typeArtigo
unesp.author.orcid0000-0003-0849-3180[1]
unesp.author.orcid0000-0003-2928-4599[2]
unesp.author.orcid0000-0001-9853-4438[3]

Arquivos

Coleções