Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Análise da estabilidade estática de tensão de sistemas elétricos de potência usando uma rede neural baseada na teoria da ressonância adaptativa

dc.contributor.advisorMinussi, Carlos Roberto [UNESP]
dc.contributor.authorIsoda, Lilian Yuli [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-06-11T19:30:50Z
dc.date.available2014-06-11T19:30:50Z
dc.date.issued2009-03-13
dc.description.abstractNesta tese apresenta-se uma proposta para análise da estabilidade estática de tensão de sistemas de energia elétrica utilizando uma rede neural baseada na arquitetura ART (Adaptive Resonance Theory), designada rede neural ARTMAP Fuzzy. As redes neurais ARTdescendentes apresentam as características de estabilidade e plasticidade, as quais são propriedades imprescindíveis para a realização do treinamento e execução da análise de forma rápida e confiável. A versão ARTMAP Fuzzy é uma rede neural supervisionada, ou seja, a extração do conhecimento se processa por estímulos de entrada e de saída. O problema da análise de estabilidade de tensão é formulado considerando-se o estímulo de entrada composto pelas potências ativa e reativa nodais. O estímulo de saída é adotado como sendo a margem de segurança, a qual representa a “distância” entre o ponto de operação do sistema e a fronteira da estabilidade estática de tensão. Esta margem de segurança é calculada, via análise de sensibilidade e álgebra matricial de Kronecker, a partir da função determinante da matriz jacobiana relativa ao problema do fluxo de potência de Newton-Raphson. A operacionalidade das redes neurais é constituída por três fases principais: treinamento (ou aprendizado), análise e treinamento continuado. A fase de treinamento requer uma grande quantidade de processamento, enquanto que a fase de análise é realizada, efetivamente, sem esforço computacional. Esta é, por conseguinte, a principal justificativa para o uso das redes neurais para a resolução de problemas complexos que exigem soluções rápidas, como é o caso de aplicações em tempo real. Na fase de treinamento, o perfil de geração e de carga do sistema elétrico é gerado empregando-se uma distribuição aleatória (ou pseudo-aleatória) e a respectiva saída (margem de segurança) calculada via execução...pt
dc.description.abstractThis work develops a methodology to effectuate static voltage stability of electrical power systems by neural network. The neural network used is based on the ART (Adaptive Resonance Theory) architecture, named ARTMAP Fuzzy neural network. The ART descendent neural networks present the characteristics of stability and plasticity, which are important properties to execute the training and the analysis fast and reliable. The ARTMAP Fuzzy version is a supervised neural network, i.e. the extraction of the knowledge is processed by input/output stimulus. The voltage stability analysis problem is formulated considering the input stimulus composed by the active and reactive nodal power. The output stimulus is adopted as the security margin, which represents the distance with the operation point and the static voltage stability frontier. The security margin is calculated by sensitivity analysis and Kronecker algebra from the determinant function of the Jacobian matrix related to the power flow problem by Newton-Raphson. Neural Network operation is constituted by three principal phase: training (or learning), analysis and continuous training. The training phase needs great processing effort, while the analysis is effectuated without computational effort. This is the principal advantage to use neural networks to solve complex problems that need fast solutions as the real time applications. On the training phase, the generation and load profile is generated using a random (or pseudo random) distribution and the respective output (security margin) is calculated by executing a conventional power-flow with adequate adaptations. The procedure proposed is independent of how is defined the generation dispatch and how the system load evolves. This is a more realistic approach, when compared to the most of the proposals found on the specialized literature that considers the load increasing linearly... (Complete abstract click electronic access below)en
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.format.extent113 f. : il.
dc.identifier.aleph000592854
dc.identifier.capes33004099080P0
dc.identifier.citationISODA, Lilian Yuli. Análise da estabilidade estática de tensão de sistemas elétricos de potência usando uma rede neural baseada na teoria da ressonância adaptativa. 2009. 113 f. Tese (doutorado) - Universidade Estadual Paulista, Faculdade de Engenharia de Ilha Solteira, 2009.
dc.identifier.fileisoda_ly_dr_ilha.pdf
dc.identifier.lattes7166279400544764
dc.identifier.lattes7097473032191209
dc.identifier.urihttp://hdl.handle.net/11449/100318
dc.language.isopor
dc.publisherUniversidade Estadual Paulista (Unesp)
dc.rights.accessRightsAcesso aberto
dc.sourceAleph
dc.subjectSistemas de energia eletrica - Estabilidadept
dc.subjectRedes neurais (Computação)pt
dc.subjectLógica difusapt
dc.subjectTeoria da ressonância adaptativapt
dc.subjectElectrical engineeringen
dc.subjectElectrical power systemsen
dc.subjectStatic voltage stabilityen
dc.subjectArtificial neural networken
dc.subjectAdaptive resonance theoryen
dc.titleAnálise da estabilidade estática de tensão de sistemas elétricos de potência usando uma rede neural baseada na teoria da ressonância adaptativapt
dc.typeTese de doutorado
unesp.advisor.lattes7166279400544764[1]
unesp.advisor.orcid0000-0001-6428-4506[1]
unesp.author.lattes7097473032191209
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Engenharia, Ilha Solteirapt
unesp.graduateProgramEngenharia Elétrica - FEISpt
unesp.knowledgeAreaAutomaçãopt
unesp.researchAreaSistemas de energia elétricapt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
isoda_ly_dr_ilha.pdf
Tamanho:
507.44 KB
Formato:
Adobe Portable Document Format