Thermodynamic analysis of biomedical waste plasma gasification
Nenhuma Miniatura disponível
Data
2022-04-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
Plasma gasification technology is one of the environmentally correct techniques that can be applied in the processing of biomedical waste (BW). This work aims to present thermodynamic studies with a simulation of the plasma gasification of BW produced in Brazil. Through thermodynamic analysis is determined the best operating point of the reactor, which corresponds to the temperature where the energy yield of syngas is maximum, and consequently the syngas chemical composition and its lower heating value (LHV). Finally, it is estimated the electrical power required in the BW processing and the potential for electricity generation through the burning of syngas in an internal combustion engine (ICE) and gas turbine set (GTS), and the capacity to supply the necessary energy in the plasma gasifier. As conclusion, the best operating point for the processing of typical Brazilian BW is at a temperature of 1040 K with a maximum gas energy yield of 2.25. For this temperature the syngas consists of 63.65 wt% of carbon monoxide and 5.35 wt% of hydrogen and LHV of 13.47 MJ/kg. Finally, for processing 1 kg/s of BW are required 6292 kW of electrical power, and the maximum electricity production potential is 3132 kW in ICE and 3758 kW in GTS.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Energy, v. 244.