Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Pool boiling heat transfer of HFE-7100 on metal foams

dc.contributor.authorManetti, Leonardo Lachi [UNESP]
dc.contributor.authorRibatski, Gherhardt
dc.contributor.authorde Souza, Reinaldo Rodrigues [UNESP]
dc.contributor.authorCardoso, Elaine Maria [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2020-12-12T01:52:28Z
dc.date.available2020-12-12T01:52:28Z
dc.date.issued2020-05-01
dc.description.abstractThe search for new techniques to increase boiling heat transfer has been driven by more efficient and compact heat exchangers, especially in microelectronics and equipment with high thermal loads. Two-phase cooling systems are a promising thermal management technology for high-heat dissipation. In this context, the present study investigated the performance of modified heating surfaces consisting of metal foams of nickel (Ni) and copper (Cu). Pool boiling tests were performed using HFE-7100 as working fluid, at saturation conditions. The metal foams surfaces provided a higher heat transfer coefficient compared to plain surfaces and prevented thermal overshoot at the onset nucleate boiling. The Cu foam provided the best performance for the entire boiling curve. In general, for low and moderated heat fluxes, there is a combined effect of surface area and thermal conductivity of foams; the high surface area of Ni foam provides a barrier for the departure of the vapor bubble, inhibiting the cooling effect of the heating surface. For the Cu foam, no significant vapor trapped effect was observed, and the highest heat transfer coefficient was 12.4 kW/m2∙K for a heat flux around 270 kW/m2; in addition, the thermal behavior is a function of the permeability and wickability behaviors of the surfaces.en
dc.description.affiliationUNESP – São Paulo State University School of Engineering Post-Graduation Program in Mechanical Engineering, Av. Brasil, 56, 15385-000
dc.description.affiliationHeat Transfer Research Group Department of Mechanical Engineering Escola de Engenharia de São Carlos (EESC) University of São Paulo (USP)
dc.description.affiliationUnespUNESP – São Paulo State University School of Engineering Post-Graduation Program in Mechanical Engineering, Av. Brasil, 56, 15385-000
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipUniversidade Estadual Paulista
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: /EESC-USP
dc.description.sponsorshipIdFAPESP: 2013/15431-7
dc.description.sponsorshipIdFAPESP: 2017/13813-0
dc.description.sponsorshipIdFAPESP: 2019/02566-8
dc.description.sponsorshipIdCNPq: 458702/2014-5
dc.identifierhttp://dx.doi.org/10.1016/j.expthermflusci.2019.110025
dc.identifier.citationExperimental Thermal and Fluid Science, v. 113.
dc.identifier.doi10.1016/j.expthermflusci.2019.110025
dc.identifier.issn0894-1777
dc.identifier.scopus2-s2.0-85077464275
dc.identifier.urihttp://hdl.handle.net/11449/199904
dc.language.isoeng
dc.relation.ispartofExperimental Thermal and Fluid Science
dc.sourceScopus
dc.titlePool boiling heat transfer of HFE-7100 on metal foamsen
dc.typeArtigo
unesp.departmentEngenharia Mecânica - FEISpt

Arquivos