Publicação:
An efficient parallel optimization for co-authorship network analysis

dc.contributor.authorValencio, Carlos Roberto [UNESP]
dc.contributor.authorDe Freitas, Jose Carlos [UNESP]
dc.contributor.authorGratao De Souza, Rogeria Cristiane [UNESP]
dc.contributor.authorNeves, Leandro Alves [UNESP]
dc.contributor.authorDonega Zafalon, Geraldo Francisco [UNESP]
dc.contributor.authorColombini, Angelo Cesar
dc.contributor.authorTenorio, William [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2018-12-11T17:20:03Z
dc.date.available2018-12-11T17:20:03Z
dc.date.issued2018-03-27
dc.description.abstractCo-authorship analysis in science and technology partnerships provides a vision of cooperation patterns between individuals and organizations and is still widely used to understand and assess scientific collaboration patterns. This analysis is conducted by means of bibliometry, which is the quantitative study of scientific production. However, with the evolution of database management systems, there was a significant increase in the volume of stored data, which could difficult the analysis. In this context, the developed work presents an efficient parallel optimization of bibliometric information, in order to allow this scientific analysis in a Big Data environment. Our results show that the time taken to calculate the transitivity value using the sequential approach grows 4.08 times faster than the parallel proposed approach when the number of nodes tends to infinity; the time taken to calculate the average distance and diameter values using the sequential approach grows 5.27 times faster than the parallel proposed approach when the number of nodes tends to infinity. Also, the results found present good values of speed up and efficiency.en
dc.description.affiliationDepartment of Computer Science and Statistics São Paulo State University (Unesp) Institute of Biosciences Humanities and Exact Sciences (Ibilce) Campus São José Do Rio Preto
dc.description.affiliationDepartment of Computer Science Federal University of São Carlos (UFSCAR)
dc.description.affiliationUnespDepartment of Computer Science and Statistics São Paulo State University (Unesp) Institute of Biosciences Humanities and Exact Sciences (Ibilce) Campus São José Do Rio Preto
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.format.extent127-134
dc.identifierhttp://dx.doi.org/10.1109/PDCAT.2017.00030
dc.identifier.citationParallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings, v. 2017-December, p. 127-134.
dc.identifier.doi10.1109/PDCAT.2017.00030
dc.identifier.lattes4644812253875832
dc.identifier.lattes2139053814879312
dc.identifier.orcid0000-0002-9325-3159
dc.identifier.scopus2-s2.0-85046774100
dc.identifier.urihttp://hdl.handle.net/11449/176308
dc.language.isoeng
dc.relation.ispartofParallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectBibliometrics
dc.subjectBig data
dc.subjectCoauthorship network
dc.subjectGraphs
dc.subjectKnowledge extraction
dc.subjectNoSQL
dc.titleAn efficient parallel optimization for co-authorship network analysisen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.author.lattes4644812253875832[1]
unesp.author.lattes2139053814879312
unesp.author.orcid0000-0002-9325-3159[1]
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos