Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Structural damage detection by fuzzy clustering

dc.contributor.authorda Silva, Samuel
dc.contributor.authorDias Junior, Milton
dc.contributor.authorLopes Junior, Vicente [UNESP]
dc.contributor.authorBrennan, Michael J.
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Southampton
dc.date.accessioned2014-05-20T13:29:26Z
dc.date.available2014-05-20T13:29:26Z
dc.date.issued2008-10-01
dc.description.abstractThe development of strategies for structural health monitoring (SHM) has become increasingly important because of the necessity of preventing undesirable damage. This paper describes an approach to this problem using vibration data. It involves a three-stage process: reduction of the time-series data using principle component analysis (PCA), the development of a data-based model using an auto-regressive moving average (ARMA) model using data from an undamaged structure, and the classification of whether or not the structure is damaged using a fuzzy clustering approach. The approach is applied to data from a benchmark structure from Los Alamos National Laboratory, USA. Two fuzzy clustering algorithms are compared: fuzzy c-means (FCM) and Gustafson-Kessel (GK) algorithms. It is shown that while both fuzzy clustering algorithms are effective, the GK algorithm marginally outperforms the FCM algorithm. (C) 2008 Elsevier Ltd. All rights reserved.en
dc.description.affiliationUniv Estadual Campinas, Dept Mech Design, Fac Mech Engn, BR-13083970 Campinas, SP, Brazil
dc.description.affiliationUniv Estadual Paulista UNESP, Dept Mech Engn, BR-15385000 Ilha Solteira, SP, Brazil
dc.description.affiliationUniv Southampton, Inst Sound & Vibrat Res, Southampton, Hants, England
dc.description.affiliationUnespUniv Estadual Paulista UNESP, Dept Mech Engn, BR-15385000 Ilha Solteira, SP, Brazil
dc.format.extent1636-1649
dc.identifierhttp://dx.doi.org/10.1016/j.ymssp.2008.01.004
dc.identifier.citationMechanical Systems and Signal Processing. London: Academic Press Ltd Elsevier B.V. Ltd, v. 22, n. 7, p. 1636-1649, 2008.
dc.identifier.doi10.1016/j.ymssp.2008.01.004
dc.identifier.issn0888-3270
dc.identifier.lattes1457178419328525
dc.identifier.lattes8338952092032444
dc.identifier.urihttp://hdl.handle.net/11449/9927
dc.identifier.wosWOS:000257866600009
dc.language.isoeng
dc.publisherAcademic Press Ltd Elsevier B.V. Ltd
dc.relation.ispartofMechanical Systems and Signal Processing
dc.relation.ispartofjcr4.370
dc.relation.ispartofsjr1,805
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectstructural health monitoringen
dc.subjecttime seriesen
dc.subjectprincipal component analysisen
dc.subjectfuzzy clusteringen
dc.titleStructural damage detection by fuzzy clusteringen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderAcademic Press Ltd Elsevier B.V. Ltd
unesp.author.lattes1457178419328525
unesp.author.lattes8338952092032444
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Engenharia, Ilha Solteirapt
unesp.departmentEngenharia Mecânica - FEISpt

Arquivos

Licença do Pacote

Agora exibindo 1 - 2 de 2
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: