A statistical law for multiplicities of SU(3) irreps (lambda, mu) in the plethysm {eta} circle times(3) {m} -> (lambda, mu)
Nenhuma Miniatura disponível
Data
2009-04-10
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Iop Publishing Ltd
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
A statistical law for the multiplicities of the SU(3) irreps (lambda, mu) in the reduction of totally symmetric irreducible representations {m} of U(N), N = (eta + 1) (eta + 2)/2 with eta being the three-dimensional oscillator major shell quantum number, is derived in terms of the quadratic and cubic invariants of SU(3), by determining the first three terms of an asymptotic expansion for the multiplicities. To this end, the bivariate Edgeworth expansion known in statistics is used. Simple formulae, in terms of m and eta, for all the parameters in the expansion are derived. Numerical tests with large m and eta = 4, 5 and 6 show good agreement with the statistical formula for the SU(3) multiplicities.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Journal of Physics A-mathematical and Theoretical. Bristol: Iop Publishing Ltd, v. 42, n. 14, p. 20, 2009.