An evolutionary algorithm for quadcopter trajectory optimization in aerial challenges
dc.contributor.author | Alves, Adson Nogueira [UNESP] | |
dc.contributor.author | Ferreira, Murillo Augusto S. [UNESP] | |
dc.contributor.author | Colombini, Esther Luna | |
dc.contributor.author | Simoes, Alexandre da Silva [UNESP] | |
dc.contributor.author | Goncalves, LMG | |
dc.contributor.author | Drews, PLJ | |
dc.contributor.author | DaSilva, BMF | |
dc.contributor.author | DosSantos, D. H. | |
dc.contributor.author | DeMelo, JCP | |
dc.contributor.author | Curvelo, CDF | |
dc.contributor.author | Fabro, J. A. | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.date.accessioned | 2023-07-29T11:55:36Z | |
dc.date.available | 2023-07-29T11:55:36Z | |
dc.date.issued | 2020-01-01 | |
dc.description.abstract | Machine learning methods have been widely employed in robotics over the years, and recent developments in machine learning have completely re-shaped problem-solving in the area. Indeed, if we consider multi-objective planning, these models' optimization and learning capabilities can derive more robust strategies. Inspired by the species natural selection mechanism, Evolutionary Algorithms (EA) are among the best known computational approaches available for this purpose. In this scenario, this work proposed an EA model developed to find the best travel trajectory for a quadcopter in the Desafio Petrobras challenge. In the challenge, a set of landing platforms that the robot has to visit are displaced in the 3D-space. To find the best trajectory possible, we optimize an EA over a low-level control that can take the quadcopter from point A to B. We vary our fitness function to support more complex decisions. The software-in-the-loop technique was applied for a simulated quadrotor in the Coppelia simulated environment. The proposed approach has shown the capability to generate short trajectories while considering variables like UAV dynamics and energy consumption. | en |
dc.description.affiliation | Sao Paulo State Univ Unesp, Grad Program Elect Engn PGEE, Sorocaba, SP, Brazil | |
dc.description.affiliation | Univ Campinas Unicamp, Inst Comp IC, Campinas, SP, Brazil | |
dc.description.affiliation | Sao Paulo State Univ Unesp, Dept Control & Automat Engn DECA, Inst Sci & Technol ICT, Sorocaba, SP, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ Unesp, Grad Program Elect Engn PGEE, Sorocaba, SP, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ Unesp, Dept Control & Automat Engn DECA, Inst Sci & Technol ICT, Sorocaba, SP, Brazil | |
dc.description.sponsorship | Coordena��o de Aperfei�oamento de Pessoal de N�vel Superior (CAPES) | |
dc.description.sponsorship | Electrical Engineering Graduate Program (PGEE) at the Institute of Science and Technology (ICT) of Sorocaba | |
dc.description.sponsorship | Automation and Integrated systems Group (GASI) at Unesp | |
dc.format.extent | 329-334 | |
dc.identifier.citation | 2020 XVIII Latin American Robotics Symposium, 2020 Xii Brazilian Symposium on Robotics and 2020 Xi Workshop of Robotics in Education (lars-sbr-wre 2020). New York: IEEE, p. 329-334, 2020. | |
dc.identifier.uri | http://hdl.handle.net/11449/245458 | |
dc.identifier.wos | WOS:000856082100056 | |
dc.language.iso | eng | |
dc.publisher | Ieee | |
dc.relation.ispartof | 2020 Xviii Latin American Robotics Symposium, 2020 Xii Brazilian Symposium On Robotics And 2020 Xi Workshop Of Robotics In Education (lars-sbr-wre 2020) | |
dc.source | Web of Science | |
dc.title | An evolutionary algorithm for quadcopter trajectory optimization in aerial challenges | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dcterms.rightsHolder | Ieee | |
unesp.campus | Universidade Estadual Paulista (Unesp), Instituto de Ciência e Tecnologia, Sorocaba | pt |
unesp.department | Engenharia de Controle e Automação - ICTS | pt |