Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Correlation between solvation of peptide-resins and solvent properties

Nenhuma Miniatura disponível

Data

1996-12-13

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Amer Chemical Soc

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

The solvation properties of model resin and peptide-resins measured in ca. 30 solvent systems correlated better with the sum of solvent electron acceptor (AN) and electron donor (DN) numbers, in 1:1 proportion, than with other solvent polarity parameters. The high sensitivity of the (AN+DN) term to detect differentiated solvation behaviors of peptide-resins, taken as model of heterogeneous and complex solutes, seems to be in agreement with the previously proposed two-parameter model, where the sum of the Lewis acidity and Lewis basicity characters of solvent are proposed for scaling solvent effect. Besides these physicochemical aspects regarding solute-solvent interactions, important implications of this study for the solid phase peptide synthesis were also observed. Each class of peptide-resin displayed a specific salvation profile that was dependent on the amount and the nature of the resin-bound peptide sequence. Plots of resin swelling versus solvent (AN+DN) values allowed the visualization of a maximum salvation region characteristic for each class of resin. This strategy facilitates the selection of solvent systems for optimal solvation conditions of peptide chains in every step of the entire synthesis cycle. Moreover, only the AN and DN concepts allow the understanding of rules for solvation/shrinking of peptide-resins when in homogeneous or in heterogeneous mixed solvents.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Journal of Organic Chemistry. Washington: Amer Chemical Soc, v. 61, n. 25, p. 8992-9000, 1996.

Itens relacionados

Financiadores