Harmonic identification using parallel neural networks in single-phase systems
dc.contributor.author | do Nascimento, Claudionor Francisco | |
dc.contributor.author | de Oliveira, Azauri Albano | |
dc.contributor.author | Goedtel, Alessandro | |
dc.contributor.author | Amaral Serni, Paulo Jose [UNESP] | |
dc.contributor.institution | Fed Univ Technol UTFPR | |
dc.contributor.institution | Universidade Federal do ABC (UFABC) | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2014-05-20T15:33:18Z | |
dc.date.available | 2014-05-20T15:33:18Z | |
dc.date.issued | 2011-03-01 | |
dc.description.abstract | In this paper, artificial neural networks are employed in a novel approach to identify harmonic components of single-phase nonlinear load currents, whose amplitude and phase angle are subject to unpredictable changes, even in steady-state. The first six harmonic current components are identified through the variation analysis of waveform characteristics. The effectiveness of this method is tested by applying it to the model of a single-phase active power filter, dedicated to the selective compensation of harmonic current drained by an AC controller. Simulation and experimental results are presented to validate the proposed approach. (C) 2010 Elsevier B. V. All rights reserved. | en |
dc.description.affiliation | Fed Univ Technol UTFPR, Dept Elect Engn, BR-86300000 Cornelio Procopio, PR, Brazil | |
dc.description.affiliation | Fed Univ ABC UFABC, CECS, BR-09210170 Santo Andre, SP, Brazil | |
dc.description.affiliation | Univ São Paulo USP, Dept Elect Engn, BR-13566590 São Carlos, SP, Brazil | |
dc.description.affiliation | São Paulo State Univ UNESP, FEB, BR-17033360 Bauru, SP, Brazil | |
dc.description.affiliationUnesp | São Paulo State Univ UNESP, FEB, BR-17033360 Bauru, SP, Brazil | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | CNPq: 142128/2005-8 | |
dc.description.sponsorshipId | CNPq: 474290/2008-5 | |
dc.description.sponsorshipId | FAPESP: 06/56093-3 | |
dc.format.extent | 2178-2185 | |
dc.identifier | http://dx.doi.org/10.1016/j.asoc.2010.07.017 | |
dc.identifier.citation | Applied Soft Computing. Amsterdam: Elsevier B.V., v. 11, n. 2, p. 2178-2185, 2011. | |
dc.identifier.doi | 10.1016/j.asoc.2010.07.017 | |
dc.identifier.issn | 1568-4946 | |
dc.identifier.uri | http://hdl.handle.net/11449/41969 | |
dc.identifier.wos | WOS:000286373200070 | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.ispartof | Applied Soft Computing | |
dc.relation.ispartofjcr | 3.907 | |
dc.relation.ispartofsjr | 1,199 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Web of Science | |
dc.subject | Harmonic distortion | en |
dc.subject | Neural network application | en |
dc.subject | Single-phase power system | en |
dc.subject | Power electronics | en |
dc.title | Harmonic identification using parallel neural networks in single-phase systems | en |
dc.type | Artigo | |
dcterms.license | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dcterms.rightsHolder | Elsevier B.V. |
Arquivos
Licença do Pacote
1 - 2 de 2
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição:
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: