Geometric singular perturbartion theory for non-smooth dynamical systems
dc.contributor.author | Cardin, Pedro Toniol [UNESP] | |
dc.contributor.author | Silva, Paulo Ricardo da [UNESP] | |
dc.contributor.author | Teixeira, Marco Antônio | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2015-04-27T11:55:59Z | |
dc.date.available | 2015-04-27T11:55:59Z | |
dc.date.issued | 2014 | |
dc.description.abstract | In this article we deal with singularly perturbed Filippov systems Zε: (1) ˙x = ( F(x, y, ε) if h(x, y, ε) ≤ 0, G(x, y, ε) if h(x, y, ε) ≥ 0, εy˙ = H(x, y, ε), where ε ∈ R is a small parameter, x ∈ Rn, n ≥ 2, and y ∈ R denote the slow and fast variables, respectively, and F, G, h, and H are smooth maps. We study the effect of singular perturbations at typical singularities of Z0. Special attention will be dedicated to those points satisfying q ∈ {h(x, y, 0) = 0} ∩ {H(x, y, 0) = 0} where F or G is tangent to {h(x, y, 0) = 0}. The persistence and the stability properties of those objects are investigated. | en |
dc.description.affiliation | Universidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Matemática, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, Sao Jose do Rio Preto, Rua Cristóvão Colombo, 2265, Jardim Nazareth, CEP 15054-000, SP, Brasil | |
dc.description.affiliationUnesp | Universidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Matemática, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | FAPESP: 2013/21947-6 | |
dc.format.extent | 111-134 | |
dc.identifier | http://mat.uab.cat/pubmat/articles/view_doi/10.5565/PUBLMAT_Extra14_06 | |
dc.identifier.citation | Publicacions Matemàtiques, v. EXTRA, p. 111-134, 2014. | |
dc.identifier.doi | 10.5565/publmat_extra14_06 | |
dc.identifier.issn | 0214-1493 | |
dc.identifier.lattes | 6050955861168161 | |
dc.identifier.lattes | 8032879915906661 | |
dc.identifier.lattes | 5876069431008771 | |
dc.identifier.orcid | 0000-0002-1430-5986 | |
dc.identifier.orcid | 0000-0002-8723-8200 | |
dc.identifier.uri | http://hdl.handle.net/11449/122732 | |
dc.language.iso | eng | |
dc.relation.ispartof | Publicacions Matemàtiques | |
dc.relation.ispartofjcr | 1.000 | |
dc.relation.ispartofsjr | 0,916 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Currículo Lattes | |
dc.subject | Filippov systems | en |
dc.subject | singular perturbation | en |
dc.subject | tangency points | en |
dc.title | Geometric singular perturbartion theory for non-smooth dynamical systems | en |
dc.type | Artigo | |
unesp.author.lattes | 6050955861168161[2] | |
unesp.author.lattes | 8032879915906661[1] | |
unesp.author.lattes | 5876069431008771 | |
unesp.author.orcid | 0000-0002-1430-5986[2] | |
unesp.author.orcid | 0000-0002-8723-8200[1] | |
unesp.campus | Universidade Estadual Paulista (Unesp), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Matemática - IBILCE | pt |