Geometric singular perturbartion theory for non-smooth dynamical systems

dc.contributor.authorCardin, Pedro Toniol [UNESP]
dc.contributor.authorSilva, Paulo Ricardo da [UNESP]
dc.contributor.authorTeixeira, Marco Antônio
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2015-04-27T11:55:59Z
dc.date.available2015-04-27T11:55:59Z
dc.date.issued2014
dc.description.abstractIn this article we deal with singularly perturbed Filippov systems Zε: (1) ˙x = ( F(x, y, ε) if h(x, y, ε) ≤ 0, G(x, y, ε) if h(x, y, ε) ≥ 0, εy˙ = H(x, y, ε), where ε ∈ R is a small parameter, x ∈ Rn, n ≥ 2, and y ∈ R denote the slow and fast variables, respectively, and F, G, h, and H are smooth maps. We study the effect of singular perturbations at typical singularities of Z0. Special attention will be dedicated to those points satisfying q ∈ {h(x, y, 0) = 0} ∩ {H(x, y, 0) = 0} where F or G is tangent to {h(x, y, 0) = 0}. The persistence and the stability properties of those objects are investigated.en
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Matemática, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, Sao Jose do Rio Preto, Rua Cristóvão Colombo, 2265, Jardim Nazareth, CEP 15054-000, SP, Brasil
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Matemática, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2013/21947-6
dc.format.extent111-134
dc.identifierhttp://mat.uab.cat/pubmat/articles/view_doi/10.5565/PUBLMAT_Extra14_06
dc.identifier.citationPublicacions Matemàtiques, v. EXTRA, p. 111-134, 2014.
dc.identifier.doi10.5565/publmat_extra14_06
dc.identifier.issn0214-1493
dc.identifier.lattes6050955861168161
dc.identifier.lattes8032879915906661
dc.identifier.lattes5876069431008771
dc.identifier.orcid0000-0002-1430-5986
dc.identifier.orcid0000-0002-8723-8200
dc.identifier.urihttp://hdl.handle.net/11449/122732
dc.language.isoeng
dc.relation.ispartofPublicacions Matemàtiques
dc.relation.ispartofjcr1.000
dc.relation.ispartofsjr0,916
dc.rights.accessRightsAcesso restrito
dc.sourceCurrículo Lattes
dc.subjectFilippov systemsen
dc.subjectsingular perturbationen
dc.subjecttangency pointsen
dc.titleGeometric singular perturbartion theory for non-smooth dynamical systemsen
dc.typeArtigo
unesp.author.lattes6050955861168161[2]
unesp.author.lattes8032879915906661[1]
unesp.author.lattes5876069431008771
unesp.author.orcid0000-0002-1430-5986[2]
unesp.author.orcid0000-0002-8723-8200[1]
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentMatemática - IBILCEpt

Arquivos