Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Detection of human, legitimate bot, and malicious bot in online social networks based on wavelets

dc.contributor.authorBarbon, Sylvio
dc.contributor.authorCampos, Gabriel F.C.
dc.contributor.authorTavares, Gabriel M.
dc.contributor.authorIgawa, Rodrigo A.
dc.contributor.authorProença, Mario L.
dc.contributor.authorGuido, Rodrigo Capobianco [UNESP]
dc.contributor.institutionUniversidade Estadual de Londrina (UEL)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:36:37Z
dc.date.available2018-12-11T17:36:37Z
dc.date.issued2018-02-01
dc.description.abstractSocial interactions take place in environments that influence people's behaviours and perceptions. Nowadays, the users of Online Social Network (OSN) generate a massive amount of content based on social interactions. However, OSNs wide popularity and ease of access created a perfect scenario to practice malicious activities, compromising their reliability. To detect automatic information broadcast in OSN, we developed a waveletbased model that classifies users as being human, legitimate robot, or malicious robot, as a result of spectral patterns obtained from users' textual content.We create the feature vector from the DiscreteWavelet Transform along with a weighting scheme called Lexicon-based Coefficient Attenuation. In particular, we induce a classificationmodel using the Random Forest algorithm over two real Twitter datasets. The corresponding results show the developed model achieved an average accuracy of 94.47% considering two different scenarios: Single theme and miscellaneous one.en
dc.description.affiliationDepartment of Computing Londrina State University (UEL), Rod. Celso Garcia Cid km 380
dc.description.affiliationInstituto de Biociencias Letras e Ciencias Exatas Sao Paulo State University (UNESP), Rua Cristovao Colombo 2265, Jd Nazareth
dc.description.affiliationUnespInstituto de Biociencias Letras e Ciencias Exatas Sao Paulo State University (UNESP), Rua Cristovao Colombo 2265, Jd Nazareth
dc.identifierhttp://dx.doi.org/10.1145/3183506
dc.identifier.citationACM Transactions on Multimedia Computing, Communications and Applications, v. 14, n. 1s, 2018.
dc.identifier.doi10.1145/3183506
dc.identifier.file2-s2.0-85045180136.pdf
dc.identifier.issn1551-6865
dc.identifier.issn1551-6857
dc.identifier.lattes6542086226808067
dc.identifier.orcid0000-0002-0924-8024
dc.identifier.scopus2-s2.0-85045180136
dc.identifier.urihttp://hdl.handle.net/11449/179753
dc.language.isoeng
dc.relation.ispartofACM Transactions on Multimedia Computing, Communications and Applications
dc.relation.ispartofsjr0,408
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectBots
dc.subjectOSN frauds
dc.subjectText mining
dc.subjectWavelets
dc.subjectWriting style
dc.titleDetection of human, legitimate bot, and malicious bot in online social networks based on waveletsen
dc.typeArtigo
unesp.author.lattes6542086226808067[6]
unesp.author.orcid0000-0002-0924-8024[6]
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85045180136.pdf
Tamanho:
3.89 MB
Formato:
Adobe Portable Document Format
Descrição: