Information and redundancy in the burial folding code of globular proteins within a wide range of shapes and sizes

dc.contributor.authorFerreira, Diogo C.
dc.contributor.authorvan der Linden, Marx G.
dc.contributor.authorde Oliveira, Leandro C. [UNESP]
dc.contributor.authorOnuchic, José N.
dc.contributor.authorPereira de Araújo, Antônio F.
dc.contributor.institutionUniversidade de Brasília (UnB)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionChemistry and Biosciences Rice University
dc.date.accessioned2018-12-11T17:01:51Z
dc.date.available2018-12-11T17:01:51Z
dc.date.issued2016-04-01
dc.description.abstractRecent ab initio folding simulations for a limited number of small proteins have corroborated a previous suggestion that atomic burial information obtainable from sequence could be sufficient for tertiary structure determination when combined to sequence-independent geometrical constraints. Here, we use simulations parameterized by native burials to investigate the required amount of information in a diverse set of globular proteins comprising different structural classes and a wide size range. Burial information is provided by a potential term pushing each atom towards one among a small number L of equiprobable concentric layers. An upper bound for the required information is provided by the minimal number of layers Lmin still compatible with correct folding behavior. We obtain Lmin between 3 and 5 for seven small to medium proteins with 50≤Nr≤110 residues while for a larger protein with Nr=141 we find that L≥6 is required to maintain native stability. We additionally estimate the usable redundancy for a given L≥Lmin from the burial entropy associated to the largest folding-compatible fraction of superfluous atoms, for which the burial term can be turned off or target layers can be chosen randomly. The estimated redundancy for small proteins with L=4 is close to 0.8. Our results are consistent with the above-average quality of burial predictions used in previous simulations and indicate that the fraction of approachable proteins could increase significantly with even a mild, plausible, improvement on sequence-dependent burial prediction or on sequence-independent constraints that augment the detectable redundancy during simulations.en
dc.description.affiliationLaboratório de Biofísica Teórica e Computacional Departamento de Biologia Celular Universidade de Brasília
dc.description.affiliationDepartamento de Física IBILCE Universidade Estadual Paulista - UNESP
dc.description.affiliationCenter for Theoretical Biological Physics Departments of Physics and Astronomy Chemistry and Biosciences Rice University, 6100 Main Street
dc.description.affiliationUnespDepartamento de Física IBILCE Universidade Estadual Paulista - UNESP
dc.format.extent515-531
dc.identifierhttp://dx.doi.org/10.1002/prot.24998
dc.identifier.citationProteins: Structure, Function and Bioinformatics, v. 84, n. 4, p. 515-531, 2016.
dc.identifier.doi10.1002/prot.24998
dc.identifier.issn1097-0134
dc.identifier.issn0887-3585
dc.identifier.scopus2-s2.0-84961198929
dc.identifier.urihttp://hdl.handle.net/11449/172707
dc.language.isoeng
dc.relation.ispartofProteins: Structure, Function and Bioinformatics
dc.relation.ispartofsjr1,362
dc.relation.ispartofsjr1,362
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectAtomic burial
dc.subjectComputer simulation
dc.subjectHydrophobic potential
dc.subjectProtein folding
dc.subjectStructure prediction
dc.titleInformation and redundancy in the burial folding code of globular proteins within a wide range of shapes and sizesen
dc.typeArtigo
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentFísica - IBILCEpt

Arquivos