Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Balancing the Benefits to Agriculture and Adverse Ecotoxicological Impacts of Inorganic Nanoparticles

Nenhuma Miniatura disponível

Data

2022-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Capítulo de livro

Direito de acesso

Resumo

Nutrient fertilization and use of pesticides in agriculture aid in the improvement of crop productivity and quality. However, their use may be harmful to environmental health. It is then needed an innovative alternative in agricultural cultivation, increasing fertilizers and pesticides’ effectiveness, reducing its environmental impact, and improving food production. In particular, nanotechnology is emerging as a promising alternative. Inorganic nanoparticles can be used in association with active organic ingredients or as active ingredients. While nanofertilizers offer benefits in nutrition management, nanopesticides can increase environmental safety achieving better pest control. To that end, this chapter presents an overview of these materials’ use and their beneficial and damage effects in relation to conventional compounds. It describes the main types of nanofertilizers and nanopesticides (such as nanoparticles of essential elements and polymeric nanoparticles containing these elements), giving examples of products and their applications in plants compared to conventional chemicals. In contrast, despite the advantages of using nanotechnology in agriculture, it is necessary to consider its limitations and understand its environmental behavior. The internalization and subsequent toxicity of inorganic nanoparticles in the environment depend on their physical–chemical characteristics. It is essential to understand the biological responses to their exposure in nontarget organisms at various trophic levels, which may pose a risk to human health. In conclusion, although use of inorganic nanoparticles in agriculture offer opportunities to improve crop yields, it is mandatory to make a risk prognosis due to their use before their market entrance to make decisions of agricultural practices.

Descrição

Idioma

Inglês

Como citar

Inorganic Nanopesticides and Nanofertilizers: A View from the Mechanisms of Action to Field Applications, p. 1-51.

Itens relacionados

Financiadores

Coleções