Analysis of the transistor efficiency of gas phase Zn diffusion In0.53Ga0.47As nTFETs at different temperatures

dc.contributor.authorBordallo, C.
dc.contributor.authorMartino, J. A.
dc.contributor.authorAgopian, P. G.D. [UNESP]
dc.contributor.authorAlian, A.
dc.contributor.authorMols, Y.
dc.contributor.authorRooyackers, R.
dc.contributor.authorVandooren, A.
dc.contributor.authorVerhulst, A. S.
dc.contributor.authorSimoen, E.
dc.contributor.authorClaeys, C.
dc.contributor.authorCollaert, N.
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionImec
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionKU Leuven
dc.date.accessioned2018-12-11T16:48:36Z
dc.date.available2018-12-11T16:48:36Z
dc.date.issued2017-06-29
dc.description.abstractIn this work, the influence of the temperature and the different equivalent oxide thickness (EOT) of In0.53Ga0.47As nTFETs fabricated with gas phase Zn diffusion is analyzed. The different devices have in their gates stacks 3 nm of HfO2 (with an EOT of 1 nm) or 2 nm of HfO2 (with an EOT of 0.8 nm). The use of an EOT of 0.8 nm increases the band-to-band tunneling generation and also improves the subthreshold region characteristics, presenting a sub 60 mV/dec minimum subthreshold swing (56 mV/dec) at room temperature, resulting in better efficiency in weak conduction. Considering the temperature influence, the on-state current is less affected than the off-state current due to the band-to-band tunneling mechanism. In the subthreshold region the temperature decrease, which strongly reduces the off-state current, allows the band-to-band tunneling current to be more dominant, resulting in a better subthreshold swing and, consequently, a better transistor efficiency in the weak conduction regime. The opposite behavior occurs when heating the devices, reducing the influence of the band-to-band tunneling in the subthreshold region, degrading both the subthreshold swing and transistor efficiency in the weak conduction regime. In the strong conduction regime, the transistor follows the transconductance tendency, increasing for higher temperatures.en
dc.description.affiliationLSI PSI USP University of Sao Paulo
dc.description.affiliationImec
dc.description.affiliationSao Paulo State University (UNESP)
dc.description.affiliationE.E. Dept. KU Leuven
dc.description.affiliationUnespSao Paulo State University (UNESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.format.extent109-112
dc.identifierhttp://dx.doi.org/10.1109/ULIS.2017.7962614
dc.identifier.citationJoint International EUROSOl Workshop and International Conference on Ultimate Integration on Silicon-ULIS, EUROSOI-ULIS 2017 - Proceedings, p. 109-112.
dc.identifier.doi10.1109/ULIS.2017.7962614
dc.identifier.lattes0496909595465696
dc.identifier.orcid0000-0002-0886-7798
dc.identifier.scopus2-s2.0-85026734953
dc.identifier.urihttp://hdl.handle.net/11449/169989
dc.language.isoeng
dc.relation.ispartofJoint International EUROSOl Workshop and International Conference on Ultimate Integration on Silicon-ULIS, EUROSOI-ULIS 2017 - Proceedings
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectAnalog Parameters
dc.subjectIII-V materials
dc.subjectTFET
dc.subjectTransistor efficiency
dc.titleAnalysis of the transistor efficiency of gas phase Zn diffusion In0.53Ga0.47As nTFETs at different temperaturesen
dc.typeTrabalho apresentado em evento
unesp.author.lattes0496909595465696[3]
unesp.author.orcid0000-0002-0886-7798[3]

Arquivos

Coleções