Previsão de carga multinodal utilizando Rede Neural ARTMAP Euclidiana

Carregando...
Imagem de Miniatura

Data

2020-04-22

Orientador

Lopes, Mara Lúcia Martins

Coorientador

Pós-graduação

Engenharia Elétrica - FEIS

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Tipo

Dissertação de mestrado

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Resumo (português)

A antecipação da demanda energética é um segmento imprescindível para os sistemas elétricos de potência, no que tange às atividades de operação e planejamento, haja vista que as predições oportunizam elementos cruciais na tomada de decisão favorecendo diferentes ângulos desses sistemas. Essa pesquisa visa investigar o emprego das redes neurais artificiais na problemática da previsão de cargas elétricas de modo multinodal, isto é, observando-se diversos aspectos da rede elétrica. À vista disso, adotou-se uma arquitetura neural que se baseia na distância euclidiana e está fundamentada na teoria de ressonância adaptativa (ART), intitulada rede neural ARTMAP Euclidiana. No modelo neural aludido, foi aplicado um método que automatiza o ajuste dos parâmetros desta rede, visando obter resultados expressivos com rapidez, precisão e confiabilidade sem a necessidade de intervenção humana. Tendo em vista alcançar resultados com um horizonte preditivo de 24 horas à frente, a supracitada rede neural foi utilizada em diferentes módulos de um Sistema Previsor de Cargas da Subestação (SPCS) que processa as informações de cada subestação de forma particularizada. Desta forma, para avaliar a efetividade da metodologia proposta neste estudo, utilizaram-se dados históricos de cargas elétricas extraídos de um subsistema de distribuição de energia da New Zealand Electrical Company, do qual, foram aplicadas ao método proposto nesta pesquisa, nove subestações que compõem esse sistema de energia, bem como, a carga global do referido sistema elétrico.

Resumo (inglês)

Anticipating energy demand is essential for the planning and operation of electric power systems since predictions highlight important points for decision-making, which improves different angles of these systems. Therefore, this research aims to investigate the use of artificial neural networks in the problem of forecasting electric charges in a multinodal way by observing several aspects of the electrical network. A neural architecture was adopted based on Euclidean distance and on the adaptive resonance theory (ART), named ARTMAP Euclidean neural network. In this neural model, the method applied automates the adjustment of the parameters of this network, aiming to obtain expressive results with speed, precision and reliability without requiring human intervention. In order to achieve results with a predictive horizon of 24 hours ahead, neural network was used in different modules of a Substation Load Prediction System (SPCS) that processes the information of each substation in a particular way. Historical data of electrical charges were used to evaluate the effectiveness of the methodology proposed in this study. These data were collected from New Zealand Electrical Company, which nine substations comprise its energy system, as well as the overall load of its electrical system energy distribution subsystem, and then, they were applied to the method proposed in this research.

Descrição

Idioma

Português

Como citar

Itens relacionados

Financiadores