Publicação:
A Hybrid Approach using Progressive and Genetic Algorithms for Improvements in Multiple Sequence Alignments

dc.contributor.authorZafalon, Geraldo Francisco Donega[UNESP]
dc.contributor.authorGomes, Vitoria Zanon [UNESP]
dc.contributor.authorAmorim, Anderson Rici [UNESP]
dc.contributor.authorValencio, Carlos Roberto [UNESP]
dc.contributor.authorFilipe, J.
dc.contributor.authorSmialek, M.
dc.contributor.authorBrodsky, A.
dc.contributor.authorHammoudi, S.
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniv Paulista
dc.date.accessioned2022-11-30T13:42:45Z
dc.date.available2022-11-30T13:42:45Z
dc.date.issued2021-01-01
dc.description.abstractThe multiple sequence alignment is one of the main tasks in bioinformatics. It is used in different important biological analysis, such as function and structure prediction of unknown proteins. There are several approaches to perform multiple sequence alignment and the use of heuristics and meta-heuristics stands out because of the search ability of these methods, which generally leads to good results in a reasonable amount of time. The progressive alignment and genetic algorithm are among the most used heuristics and meta-heuristics to perform multiple sequence alignment. However, both methods have disadvantages, such as error propagation in the case of progressive alignment and local optima results in the case of genetics algorithm. Thus, this work proposes a new hybrid refinement phase using a progressive approach to locally realign the multiple sequence alignment produced by genetic algorithm based tools. Our results show that our method is able to improve the quality of the alignments of all families from BAliBase. Considering Q and TC quality measures from BaliBase, we have obtained the improvements of 55% for Q and 167% for TC. Then, with these results we can provide more biologically significant results.en
dc.description.affiliationUniv Estadual Paulista, UNESP, Dept Comp Sci & Stat, Rua Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.description.affiliationUniv Sao Paulo, Dept Comp & Digital Syst Engn, Escola Politecn, Av Prof Luciano Gualberto,Travessa 3,158, BR-05508010 Sao Paulo, SP, Brazil
dc.description.affiliationUniv Paulista, Dept ICET, Ave Presidente Juscelino Kubitschek de Oliveira, BR-15091450 Sao Jose Do Rio Preto, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Dept Comp Sci & Stat, Rua Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipUniversidade Paulista (Unip/ICET)
dc.description.sponsorshipIdFAPESP: 2019/00030-3
dc.description.sponsorshipIdUniversidade Paulista (Unip/ICET): 7-03/1116/2019
dc.format.extent384-391
dc.identifierhttp://dx.doi.org/10.5220/0010495303840391
dc.identifier.citationIceis: Proceedings Of The 23rd International Conference On Enterprise Information Systems - Vol 2. Setubal: Scitepress, p. 384-391, 2021.
dc.identifier.doi10.5220/0010495303840391
dc.identifier.issn2184-4992
dc.identifier.urihttp://hdl.handle.net/11449/237714
dc.identifier.wosWOS:000783951300040
dc.language.isoeng
dc.publisherScitepress
dc.relation.ispartofIceis: Proceedings Of The 23rd International Conference On Enterprise Information Systems - Vol 2
dc.sourceWeb of Science
dc.subjectGenetic Algorithm
dc.subjectMultiple Sequence Alignment
dc.subjectHybrid Multiple Sequence Alignment
dc.subjectBioinformatics
dc.titleA Hybrid Approach using Progressive and Genetic Algorithms for Improvements in Multiple Sequence Alignmentsen
dc.typeTrabalho apresentado em evento
dcterms.rightsHolderScitepress
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos