Fusion of time series representations for plant recognition in phenology studies

dc.contributor.authorFaria, Fabio A.
dc.contributor.authorAlmeida, Jurandy
dc.contributor.authorAlberton, Bruna [UNESP]
dc.contributor.authorMorellato, Leonor Patricia C. [UNESP]
dc.contributor.authorda S. Torres, Ricardo
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:27:40Z
dc.date.available2018-12-11T17:27:40Z
dc.date.issued2016-11-01
dc.description.abstractNowadays, global warming and its resulting environmental changes is a hot topic in different biology research area. Phenology is one effective way of tracking such environmental changes through the study of plant's periodic events and their relationship to climate. One promising research direction in this area relies on the use of vegetation images to track phenology changes over time. In this scenario, the creation of effective image-based plant identification systems is of paramount importance. In this paper, we propose the use of a new representation of time series to improve plants recognition rates. This representation, called recurrence plot (RP), is a technique for nonlinear data analysis, which represents repeated events on time series into a two-dimensional representation (an image). Therefore, image descriptors can be used to characterize visual properties from this RP images so that these features can be used as input of a classifier. To the best of our knowledge, this is the first work that uses recurrence plot for plant recognition task. Performed experiments show that RP can be a good solution to describe time series. In addition, in a comparison with visual rhythms (VR), another technique used for time series representation, RP shows a better performance to describe texture properties than VR. On the other hand, a correlation analysis and the adoption of a well successful classifier fusion framework show that both representations provide complementary information that is useful for improving classification accuracies.en
dc.description.affiliationInstitute of Science and Technology Federal University of São Paulo – UNIFESP
dc.description.affiliationInstitute of Computing University of Campinas – UNICAMP
dc.description.affiliationDept. of Botany Sao Paulo State University – UNESP
dc.description.affiliationUnespDept. of Botany Sao Paulo State University – UNESP
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: #2010/52113-5
dc.description.sponsorshipIdFAPESP: #2013/50155-0
dc.description.sponsorshipIdFAPESP: #2013/50169-1
dc.description.sponsorshipIdCNPq: 306580/2012-8
dc.description.sponsorshipIdCNPq: 310761/2014-0
dc.format.extent205-214
dc.identifierhttp://dx.doi.org/10.1016/j.patrec.2016.03.005
dc.identifier.citationPattern Recognition Letters, v. 83, p. 205-214.
dc.identifier.doi10.1016/j.patrec.2016.03.005
dc.identifier.file2-s2.0-84962090167.pdf
dc.identifier.issn0167-8655
dc.identifier.scopus2-s2.0-84962090167
dc.identifier.urihttp://hdl.handle.net/11449/177916
dc.language.isoeng
dc.relation.ispartofPattern Recognition Letters
dc.relation.ispartofsjr0,662
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectClassifier fusion
dc.subjectDiversity measures
dc.subjectPlant species identification
dc.titleFusion of time series representations for plant recognition in phenology studiesen
dc.typeArtigo
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências, Rio Claropt
unesp.departmentBotânica - IBpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-84962090167.pdf
Tamanho:
3.98 MB
Formato:
Adobe Portable Document Format
Descrição: