Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

A homological version of the implicit function theorem

dc.contributor.authorBiasi, C.
dc.contributor.authordos Santos, E. L.
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T15:30:16Z
dc.date.available2014-05-20T15:30:16Z
dc.date.issued2006-06-01
dc.description.abstractOur objective in this paper is to prove an Implicit Function Theorem for general topological spaces. As a consequence, we show that, under certain conditions, the set of the invertible elements of a topological monoid X is an open topological group in X and we use the classical topological group theory to conclude that this set is a Lie group.en
dc.description.affiliationUniv São Paulo, ICMC, Dept Matemat, BR-13560970 Sao Carlos, SP, Brazil
dc.description.affiliationUniv Estadual Paulista, IBILCE, UNESP, Dept Matemat, BR-15054000 Sao Jose do Rio Preto, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, IBILCE, UNESP, Dept Matemat, BR-15054000 Sao Jose do Rio Preto, Brazil
dc.format.extent353-361
dc.identifierhttp://dx.doi.org/10.1007/s00233-006-0601-x
dc.identifier.citationSemigroup Forum. New York: Springer, v. 72, n. 3, p. 353-361, 2006.
dc.identifier.doi10.1007/s00233-006-0601-x
dc.identifier.issn0037-1912
dc.identifier.urihttp://hdl.handle.net/11449/39694
dc.identifier.wosWOS:000238024000002
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofSemigroup Forum
dc.relation.ispartofjcr0.492
dc.relation.ispartofsjr0,917
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectImplicit Function Theorempt
dc.subjecttopological monoidspt
dc.subjecttopological groupspt
dc.subjectLie groupspt
dc.subjectgeneralized manifoldspt
dc.titleA homological version of the implicit function theoremen
dc.typeArtigo
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentMatemática - IBILCEpt

Arquivos

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: