Phosphate glasses: Via coacervation route containing CdFe2O4 nanoparticles: Structural, optical and magnetic characterization

Nenhuma Miniatura disponível

Data

2018-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

CdFe2O4 nanoparticles of around 3.9 nm were synthesized using the coprecipitation method and protected by a silica layer. The nanoparticles were mixed with a coacervate and transformed into phosphate glasses with 1, 4 and 8% in mass of nanoparticles by the melt-quenching method. TEM images confirm that the nanoparticles were successfully incorporated into the matrix without inducing crystallization. 31P NMR and Raman spectral analyses show that new P-O-Si bonds are formed in the glasses containing nanoparticles. The glass transition increases as a function of the nanoparticle content due to an increase in the connectivity of the phosphate glass chains. The UV-Vis spectra show bands at 415 and 520 nm assigned to Fe3+ ions and at 1025 nm, characteristic of Fe2+ ions, indicating that some of the nanoparticles dissolve during the melting process. The sample with 8% CdFe2O4 presents a paramagnetic behavior. The glasses obtained are transparent, non-hygroscopic and possess enormous thermal stability which is important for the production of optical devices.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Dalton Transactions, v. 47, n. 16, p. 5771-5779, 2018.

Itens relacionados

Financiadores

Coleções