Multinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategy

dc.contributor.authorAntunes, Juliana Fonseca
dc.contributor.authorDe Souza Araujo, Nelcileno Virgilio
dc.contributor.authorMinussi, Carlos Roberto [UNESP]
dc.contributor.institutionCiência e Tecnologia de Mato Grosso
dc.contributor.institutionUFMT
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-29T07:12:57Z
dc.date.available2022-04-29T07:12:57Z
dc.date.issued2013-12-27
dc.description.abstractThis work presents a system based on Artificial Neural Networks and PSO (Particle Swarm Optimization) strategy, to multinodal load forecasting, i.e., forecasting in several points of the electrical network (substations, feeders, etc.). Short-term load forecasting is an important task to planning and operation of electric power systems. It is necessary precise and reliable techniques to execute the predictions. Therefore, the load forecasting uses the Adaptive Resonance Theory. To improve the precision, the PSO technique is used to choose the best parameters for the Artificial Neural Networks training. Results show that the use of this technique with a little set of training data improves the parameters of the neural network, calculated by the MAPE (mean absolute perceptual error) of the global and multinodal load forecasted. © 2013 IEEE.en
dc.description.affiliationDepartamento de Informática Instituto de Educação Ciência e Tecnologia de Mato Grosso, Cuiabá
dc.description.affiliationInstituto de Computação Universidade Federal de Mato Grosso UFMT, Cuiabá
dc.description.affiliationDepartamento de Engenharia Elétrica UNESP Univ Estadual Paulista, Ilha Solteira
dc.description.affiliationUnespDepartamento de Engenharia Elétrica UNESP Univ Estadual Paulista, Ilha Solteira
dc.identifierhttp://dx.doi.org/10.1109/PTC.2013.6652373
dc.identifier.citation2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013.
dc.identifier.doi10.1109/PTC.2013.6652373
dc.identifier.scopus2-s2.0-84890861608
dc.identifier.urihttp://hdl.handle.net/11449/227394
dc.language.isoeng
dc.relation.ispartof2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013
dc.sourceScopus
dc.subjectAdaptive Resonance Theory
dc.subjectArtificial Neural Network
dc.subjectMultinodal Load Forecasting
dc.subjectParticle Swarm Optimization
dc.titleMultinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategyen
dc.typeTrabalho apresentado em evento
unesp.departmentEngenharia Elétrica - FEISpt

Arquivos