Multinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategy
dc.contributor.author | Antunes, Juliana Fonseca | |
dc.contributor.author | De Souza Araujo, Nelcileno Virgilio | |
dc.contributor.author | Minussi, Carlos Roberto [UNESP] | |
dc.contributor.institution | Ciência e Tecnologia de Mato Grosso | |
dc.contributor.institution | UFMT | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.date.accessioned | 2022-04-29T07:12:57Z | |
dc.date.available | 2022-04-29T07:12:57Z | |
dc.date.issued | 2013-12-27 | |
dc.description.abstract | This work presents a system based on Artificial Neural Networks and PSO (Particle Swarm Optimization) strategy, to multinodal load forecasting, i.e., forecasting in several points of the electrical network (substations, feeders, etc.). Short-term load forecasting is an important task to planning and operation of electric power systems. It is necessary precise and reliable techniques to execute the predictions. Therefore, the load forecasting uses the Adaptive Resonance Theory. To improve the precision, the PSO technique is used to choose the best parameters for the Artificial Neural Networks training. Results show that the use of this technique with a little set of training data improves the parameters of the neural network, calculated by the MAPE (mean absolute perceptual error) of the global and multinodal load forecasted. © 2013 IEEE. | en |
dc.description.affiliation | Departamento de Informática Instituto de Educação Ciência e Tecnologia de Mato Grosso, Cuiabá | |
dc.description.affiliation | Instituto de Computação Universidade Federal de Mato Grosso UFMT, Cuiabá | |
dc.description.affiliation | Departamento de Engenharia Elétrica UNESP Univ Estadual Paulista, Ilha Solteira | |
dc.description.affiliationUnesp | Departamento de Engenharia Elétrica UNESP Univ Estadual Paulista, Ilha Solteira | |
dc.identifier | http://dx.doi.org/10.1109/PTC.2013.6652373 | |
dc.identifier.citation | 2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013. | |
dc.identifier.doi | 10.1109/PTC.2013.6652373 | |
dc.identifier.scopus | 2-s2.0-84890861608 | |
dc.identifier.uri | http://hdl.handle.net/11449/227394 | |
dc.language.iso | eng | |
dc.relation.ispartof | 2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013 | |
dc.source | Scopus | |
dc.subject | Adaptive Resonance Theory | |
dc.subject | Artificial Neural Network | |
dc.subject | Multinodal Load Forecasting | |
dc.subject | Particle Swarm Optimization | |
dc.title | Multinodal load forecasting using an ART-ARTMAP-fuzzy neural network and PSO strategy | en |
dc.type | Trabalho apresentado em evento | |
unesp.department | Engenharia Elétrica - FEIS | pt |