Approximating quantum thermodynamic properties using DFT
Carregando...
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
The fabrication, utilisation, and efficiency of quantum technology devices rely on a good understanding of quantum thermodynamic properties. Many-body systems are often used as hardware for these quantum devices, but interactions between particles make the complexity of related calculations grow exponentially with the system size. Here we explore and systematically compare 'simple' and 'hybrid' approximations to the average work and entropy variation built on static density functional theory concepts. These approximations are computationally cheap and could be applied to large systems. We exemplify them considering driven one-dimensional Hubbard chains and show that, for 'simple' approximations and low to medium temperatures, it pays to consider a good estimate of the Kohn-Sham Hamiltonian to approximate the driving Hamiltonian. Our results confirm that a 'hybrid' approach, requiring a very good approximation of the initial and, for the entropy, final states of the system, provides great improvements. This approach should be particularly efficient when many-body effects are not increased by the driving Hamiltonian.
Descrição
Palavras-chave
density functional theory, Hubbard chains, quantum thermodynamics
Idioma
Inglês
Citação
Journal of Physics Condensed Matter, v. 34, n. 27, 2022.