Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems with three zones
Nenhuma Miniatura disponível
Data
2022-01-01
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
In this paper, we study the number of limit cycles that can bifurcate from a period annulus in discontinuous planar piecewise linear Hamiltonian differential system with three zones separated by two parallel straight lines. More precisely, we consider the case where the period annulus, bounded by a heteroclinic orbit or homoclinic loop, is obtained from a real center of the central subsystem, i.e. the system defined between the two parallel lines, and two real saddles of the others subsystems. Denoting by H(n) the number of limit cycles that can bifurcate from this period annulus by polynomial perturbations of degree n, we prove that if the period annulus is bounded by a heteroclinic orbit then H(1) ≥ 2 , H(2) ≥ 3 and H(3) ≥ 5. Now, if the period annulus is bounded by a homoclinic loop then H(1) ≥ 3 , H(2) ≥ 4 and H(3) ≥ 7. For this, we study the number of zeros of a Melnikov function for piecewise Hamiltonian system.
Descrição
Idioma
Inglês
Como citar
Sao Paulo Journal of Mathematical Sciences.