Lattice constellations and codes from quadratic number fields
dc.contributor.author | Pires Da Nóbrega Neto, T. [UNESP] | |
dc.contributor.author | Interlando, J. C. [UNESP] | |
dc.contributor.author | Favareto, O. M. [UNESP] | |
dc.contributor.author | Elia, M. [UNESP] | |
dc.contributor.author | Palazzo R., Jr [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2014-05-27T11:20:16Z | |
dc.date.available | 2014-05-27T11:20:16Z | |
dc.date.issued | 2001-05-01 | |
dc.description.abstract | We propose new classes of linear codes over integer rings of quadratic extensions of Q, the field of rational numbers. The codes are considered with respect to a Mannheim metric, which is a Manhattan metric modulo a two-dimensional (2-D) grid. In particular, codes over Gaussian integers and Eisenstein-Jacobi integers are extensively studied. Decoding algorithms are proposed for these codes when up to two coordinates of a transmitted code vector are affected by errors of arbitrary Mannheim weight. Moreover, we show that the proposed codes are maximum-distance separable (MDS), with respect to the Hamming distance. The practical interest in such Mannheim-metric codes is their use in coded modulation schemes based on quadrature amplitude modulation (QAM)-type constellations, for which neither the Hamming nor the Lee metric is appropriate. | en |
dc.description.affiliation | Departamento de Matemática Universidade Estadual Paulista, 15054-000, Sao Jose do Rio Preto | |
dc.description.affiliationUnesp | Departamento de Matemática Universidade Estadual Paulista, 15054-000, Sao Jose do Rio Preto | |
dc.format.extent | 1514-1527 | |
dc.identifier | http://dx.doi.org/10.1109/18.923731 | |
dc.identifier.citation | IEEE Transactions on Information Theory, v. 47, n. 4, p. 1514-1527, 2001. | |
dc.identifier.doi | 10.1109/18.923731 | |
dc.identifier.issn | 0018-9448 | |
dc.identifier.scopus | 2-s2.0-0035334579 | |
dc.identifier.uri | http://hdl.handle.net/11449/66509 | |
dc.identifier.wos | WOS:000168790600017 | |
dc.language.iso | eng | |
dc.relation.ispartof | IEEE Transactions on Information Theory | |
dc.relation.ispartofjcr | 2.187 | |
dc.relation.ispartofsjr | 1,162 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Scopus | |
dc.subject | Algebraic decoding | |
dc.subject | Euclidean domains | |
dc.subject | Lattices | |
dc.subject | Linear codes | |
dc.subject | Mannheim distance | |
dc.subject | Number fields | |
dc.subject | Signal sets matched to groups | |
dc.subject | Algorithms | |
dc.subject | Codes (symbols) | |
dc.subject | Decoding | |
dc.subject | Error analysis | |
dc.subject | Linearization | |
dc.subject | Maximum likelihood estimation | |
dc.subject | Maximum principle | |
dc.subject | Number theory | |
dc.subject | Quadratic programming | |
dc.subject | Quadrature amplitude modulation | |
dc.subject | Two dimensional | |
dc.subject | Vector quantization | |
dc.subject | Einstein-Jacobi integers | |
dc.subject | Gaussian integers | |
dc.subject | Hamming distance | |
dc.subject | Lattice codes | |
dc.subject | Lattice constellations | |
dc.subject | Manhattan metric modulo | |
dc.subject | Mannheim metric | |
dc.subject | Maximum distance separable | |
dc.subject | Quadratic number fields | |
dc.subject | Information theory | |
dc.title | Lattice constellations and codes from quadratic number fields | en |
dc.type | Artigo | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
unesp.campus | Universidade Estadual Paulista (Unesp), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Matemática - IBILCE | pt |