Lattice constellations and codes from quadratic number fields

dc.contributor.authorPires Da Nóbrega Neto, T. [UNESP]
dc.contributor.authorInterlando, J. C. [UNESP]
dc.contributor.authorFavareto, O. M. [UNESP]
dc.contributor.authorElia, M. [UNESP]
dc.contributor.authorPalazzo R., Jr [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:20:16Z
dc.date.available2014-05-27T11:20:16Z
dc.date.issued2001-05-01
dc.description.abstractWe propose new classes of linear codes over integer rings of quadratic extensions of Q, the field of rational numbers. The codes are considered with respect to a Mannheim metric, which is a Manhattan metric modulo a two-dimensional (2-D) grid. In particular, codes over Gaussian integers and Eisenstein-Jacobi integers are extensively studied. Decoding algorithms are proposed for these codes when up to two coordinates of a transmitted code vector are affected by errors of arbitrary Mannheim weight. Moreover, we show that the proposed codes are maximum-distance separable (MDS), with respect to the Hamming distance. The practical interest in such Mannheim-metric codes is their use in coded modulation schemes based on quadrature amplitude modulation (QAM)-type constellations, for which neither the Hamming nor the Lee metric is appropriate.en
dc.description.affiliationDepartamento de Matemática Universidade Estadual Paulista, 15054-000, Sao Jose do Rio Preto
dc.description.affiliationUnespDepartamento de Matemática Universidade Estadual Paulista, 15054-000, Sao Jose do Rio Preto
dc.format.extent1514-1527
dc.identifierhttp://dx.doi.org/10.1109/18.923731
dc.identifier.citationIEEE Transactions on Information Theory, v. 47, n. 4, p. 1514-1527, 2001.
dc.identifier.doi10.1109/18.923731
dc.identifier.issn0018-9448
dc.identifier.scopus2-s2.0-0035334579
dc.identifier.urihttp://hdl.handle.net/11449/66509
dc.identifier.wosWOS:000168790600017
dc.language.isoeng
dc.relation.ispartofIEEE Transactions on Information Theory
dc.relation.ispartofjcr2.187
dc.relation.ispartofsjr1,162
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectAlgebraic decoding
dc.subjectEuclidean domains
dc.subjectLattices
dc.subjectLinear codes
dc.subjectMannheim distance
dc.subjectNumber fields
dc.subjectSignal sets matched to groups
dc.subjectAlgorithms
dc.subjectCodes (symbols)
dc.subjectDecoding
dc.subjectError analysis
dc.subjectLinearization
dc.subjectMaximum likelihood estimation
dc.subjectMaximum principle
dc.subjectNumber theory
dc.subjectQuadratic programming
dc.subjectQuadrature amplitude modulation
dc.subjectTwo dimensional
dc.subjectVector quantization
dc.subjectEinstein-Jacobi integers
dc.subjectGaussian integers
dc.subjectHamming distance
dc.subjectLattice codes
dc.subjectLattice constellations
dc.subjectManhattan metric modulo
dc.subjectMannheim metric
dc.subjectMaximum distance separable
dc.subjectQuadratic number fields
dc.subjectInformation theory
dc.titleLattice constellations and codes from quadratic number fieldsen
dc.typeArtigo
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentMatemática - IBILCEpt

Arquivos