Structural basis for metal ion coordination and the catalytic mechanism of sphingomyelinases D
Nenhuma Miniatura disponível
Data
2005-04-08
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Amer Soc Biochemistry Molecular Biology Inc
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
Sphingomyelinases D (SMases D) from Loxosceles spider venom are the principal toxins responsible for the manifestation of dermonecrosis, intravascular hemolysis, and acute renal failure, which can result in death. These enzymes catalyze the hydrolysis of sphingomyelin, resulting in the formation of ceramide 1-phosphate and choline or the hydrolysis of lysophosphatidyl choline, generating the lipid mediator lysophosphatidic acid. This report represents the first crystal structure of a member of the sphingomyelinase D family from Loxosceles laeta (SMase I), which has been determined at 1.75-angstrom resolution using the quick cryo-soaking technique and phases obtained from a single iodine derivative and data collected from a conventional rotating anode x-ray source. SMase I folds as an (alpha/beta)(8) barrel, the interfacial and catalytic sites encompass hydrophobic loops and a negatively charged surface. Substrate binding and/or the transition state are stabilized by a Mg2+ ion, which is coordinated by Glu(32), Asp(34), Asp(91), and solvent molecules. In the proposed acid base catalytic mechanism, His(12) and His(47) play key roles and are supported by a network of hydrogen bonds between Asp(34), Asp(52), Trp(230), Asp(233), and Asn(252).
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Journal of Biological Chemistry. Bethesda: Amer Soc Biochemistry Molecular Biology Inc., v. 280, n. 14, p. 13658-13664, 2005.