Comparative gas sensor response of SnO2, SnO and Sn3O4 nanobelts to NO2 and potential interferents

dc.contributor.authorSuman, P. H. [UNESP]
dc.contributor.authorFelix, A. A. [UNESP]
dc.contributor.authorTuller, H. L.
dc.contributor.authorVarela, J. A. [UNESP]
dc.contributor.authorOrlandi, M. O. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionMassachusetts Institute of Technology
dc.date.accessioned2015-10-21T20:20:34Z
dc.date.available2015-10-21T20:20:34Z
dc.date.issued2015-03-01
dc.description.abstractThe gas sensor performance of single crystalline tin oxide nanobelts in different oxidation states (SnO2, SnO and Sn3O4), synthesized by a carbothermal reduction method, is reported. The synthesized materials were characterized by X-ray diffraction, electron microscopy and nitrogen adsorption/desorption experiments. Gas sensor measurements showed that the sensor based on Sn3O4 nanobelts exhibits the highest sensor response to 50 ppm NO2 at 200 degrees C with an approximately 155-fold increase in electrical resistance. Moreover, at this operating temperature, Sn3O4 nanobelts were found to display the highest selectivity to NO2 relative to CO while SnO nanobelts exhibited the highest selectivity to NO2 relative to H-2 and CH4. These results show that tin oxide semiconducting nanomaterials, with the unusual oxidation states of SnO and Sn3O4, show great promise as alternatives to SnO2 for use in high performance gas sensor devices.en
dc.description.affiliationSão Paulo State University (UNESP) - Department of Physical-Chemistry, Araraquara, SP 14800-060, Brazil
dc.description.affiliationMassachusetts Institute of Technology - Department of Materials Science and Engineering, Cambridge, MA 02139, USA
dc.description.affiliationUnespSão Paulo State University (UNESP) - Department of Physical-Chemistry, Araraquara, SP 14800-060, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2009/13491-7
dc.description.sponsorshipIdFAPESP: 2010/51959-8
dc.description.sponsorshipIdCNPq: 200703/2011-3
dc.format.extent122-127
dc.identifierhttp://www.sciencedirect.com/science/article/pii/S0925400514013318
dc.identifier.citationSensors And Actuators B-chemical. Lausanne: Elsevier Science Sa, v. 208, p. 122-127, 2015.
dc.identifier.doi10.1016/j.snb.2014.10.119
dc.identifier.issn0925-4005
dc.identifier.lattes2305581567093057
dc.identifier.urihttp://hdl.handle.net/11449/129087
dc.identifier.wosWOS:000346000500017
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofSensors And Actuators B-chemical
dc.relation.ispartofjcr5.667
dc.relation.ispartofsjr1,406
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectTin oxideen
dc.subjectSnO2en
dc.subjectSnOen
dc.subjectSn3O4en
dc.subjectNanobeltsen
dc.subjectGas sensoren
dc.titleComparative gas sensor response of SnO2, SnO and Sn3O4 nanobelts to NO2 and potential interferentsen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
unesp.author.lattes2305581567093057
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Química, Araraquarapt

Arquivos