Surveying the quantum group symmetries of integrable open spin chains

Carregando...
Imagem de Miniatura

Data

2018-05-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Using anisotropic R-matrices associated with affine Lie algebras gˆ (specifically, A2n (2), A2n−1 (2), Bn (1), Cn (1), Dn (1)) and suitable corresponding K-matrices, we construct families of integrable open quantum spin chains of finite length, whose transfer matrices are invariant under the quantum group corresponding to removing one node from the Dynkin diagram of gˆ. We show that these transfer matrices also have a duality symmetry (for the cases Cn (1) and Dn (1)) and additional Z2 symmetries that map complex representations to their conjugates (for the cases A2n−1 (2), Bn (1) and Dn (1)). A key simplification is achieved by working in a certain “unitary” gauge, in which only the unbroken symmetry generators appear. The proofs of these symmetries rely on some new properties of the R-matrices. We use these symmetries to explain the degeneracies of the transfer matrices.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Nuclear Physics B, v. 930, p. 91-134.

Itens relacionados