Edge detection and noise removal by use of a partial differential equation with automatic selection of parameters

dc.contributor.authorBarcelos, Célia A.Z.
dc.contributor.authorBoaventura, Maurílio [UNESP]
dc.contributor.authorSilva Jr., Evanildo C.
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionFaculdade de Tecnologia do Estado de São Paulo (FATEC)
dc.date.accessioned2014-05-20T14:01:38Z
dc.date.available2014-05-20T14:01:38Z
dc.date.issued2005-04-01
dc.description.abstractThis work deals with noise removal by the use of an edge preserving method whose parameters are automatically estimated, for any application, by simply providing information about the standard deviation noise level we wish to eliminate. The desired noiseless image u(x), in a Partial Differential Equation based model, can be viewed as the solution of an evolutionary differential equation u t(x) = F(u xx, u x, u, x, t) which means that the true solution will be reached when t ® ¥. In practical applications we should stop the time ''t'' at some moment during this evolutionary process. This work presents a sufficient condition, related to time t and to the standard deviation s of the noise we desire to remove, which gives a constant T such that u(x, T) is a good approximation of u(x). The approach here focused on edge preservation during the noise elimination process as its main characteristic. The balance between edge points and interior points is carried out by a function g which depends on the initial noisy image u(x, t0), the standard deviation of the noise we want to eliminate and a constant k. The k parameter estimation is also presented in this work therefore making, the proposed model automatic. The model's feasibility and the choice of the optimal time scale is evident through out the various experimental results.en
dc.description.affiliationUFU FACOM
dc.description.affiliationUNESP IBILCE DCCE
dc.description.affiliationFATEC
dc.description.affiliationUnespUNESP IBILCE DCCE
dc.format.extent131-150
dc.identifierhttp://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100008
dc.identifier.citationComputational & Applied Mathematics. Sociedade Brasileira de Matemática Aplicada e Computacional, v. 24, n. 1, p. 131-150, 2005.
dc.identifier.fileS1807-03022005000100008.pdf
dc.identifier.issn1807-0302
dc.identifier.lattes6958497786939585
dc.identifier.scieloS1807-03022005000100008
dc.identifier.urihttp://hdl.handle.net/11449/21751
dc.language.isoeng
dc.publisherSociedade Brasileira de Matemática Aplicada e Computacional
dc.relation.ispartofComputational & Applied Mathematics
dc.rights.accessRightsAcesso aberto
dc.sourceSciELO
dc.subjectImage processingen
dc.subjectNoise removalen
dc.subjectedge detectionen
dc.subjectdiffusion equationen
dc.titleEdge detection and noise removal by use of a partial differential equation with automatic selection of parametersen
dc.typeArtigo
unesp.author.lattes6958497786939585
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
S1807-03022005000100008.pdf
Tamanho:
1.17 MB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 2 de 2
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: