Lamé differential equations and electrostatics
dc.contributor.author | Dimitrov, Dimitar K. [UNESP] | |
dc.contributor.author | Van Assche, Walter | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Katholieke Universiteit Leuven | |
dc.date.accessioned | 2014-05-27T11:19:58Z | |
dc.date.available | 2014-05-27T11:19:58Z | |
dc.date.issued | 2000-12-01 | |
dc.description.abstract | The problem of existence and uniqueness of polynomial solutions of the Lamé differential equation A(x)y″ + 2B(x)y′ + C(x)y = 0, where A(x),B(x) and C(x) are polynomials of degree p + 1,p and p - 1, is under discussion. We concentrate on the case when A(x) has only real zeros aj and, in contrast to a classical result of Heine and Stieltjes which concerns the case of positive coefficients rj in the partial fraction decomposition B(x)/A(x) = ∑j p=0 rj/(x - aj), we allow the presence of both positive and negative coefficients rj. The corresponding electrostatic interpretation of the zeros of the solution y(x) as points of equilibrium in an electrostatic field generated by charges rj at aj is given. As an application we prove that the zeros of the Gegenbauer-Laurent polynomials are the points of unique equilibrium in a field generated by two positive and two negative charges. © 2000 American Mathematical Society. | en |
dc.description.affiliation | Departamento de Ciências de Computação e EstatíStica Universidade Estadual Paulista, 15054-000 Sao Jose, Rio Preto, SP | |
dc.description.affiliation | Department of Mathematics Katholieke Universiteit Leuven, Celestijnenlaan 200 B, B-3001 Heverlee (Leuven) | |
dc.description.affiliationUnesp | Departamento de Ciências de Computação e EstatíStica Universidade Estadual Paulista, 15054-000 Sao Jose, Rio Preto, SP | |
dc.format.extent | 3621-3628 | |
dc.identifier | http://dx.doi.org/10.1090/S0002-9939-00-05638-0 | |
dc.identifier.citation | Proceedings of the American Mathematical Society, v. 128, n. 12, p. 3621-3628, 2000. | |
dc.identifier.doi | 10.1090/S0002-9939-00-05638-0 | |
dc.identifier.file | 2-s2.0-23044522838.pdf | |
dc.identifier.issn | 0002-9939 | |
dc.identifier.scopus | 2-s2.0-23044522838 | |
dc.identifier.uri | http://hdl.handle.net/11449/66323 | |
dc.identifier.wos | WOS:000089527300023 | |
dc.language.iso | eng | |
dc.relation.ispartof | Proceedings of the American Mathematical Society | |
dc.relation.ispartofjcr | 0.707 | |
dc.relation.ispartofsjr | 1,183 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Electrostatic equilibrium | |
dc.subject | Gegenbauer polynomials | |
dc.subject | Lamé differential equation | |
dc.subject | Laurent polynomials | |
dc.title | Lamé differential equations and electrostatics | en |
dc.type | Artigo | |
dcterms.license | http://www.ams.org/publications/authors/ctp | |
unesp.campus | Universidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Ciências da Computação e Estatística - IBILCE | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- 2-s2.0-23044522838.pdf
- Tamanho:
- 162.32 KB
- Formato:
- Adobe Portable Document Format