Lamé differential equations and electrostatics

dc.contributor.authorDimitrov, Dimitar K. [UNESP]
dc.contributor.authorVan Assche, Walter
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionKatholieke Universiteit Leuven
dc.date.accessioned2014-05-27T11:19:58Z
dc.date.available2014-05-27T11:19:58Z
dc.date.issued2000-12-01
dc.description.abstractThe problem of existence and uniqueness of polynomial solutions of the Lamé differential equation A(x)y″ + 2B(x)y′ + C(x)y = 0, where A(x),B(x) and C(x) are polynomials of degree p + 1,p and p - 1, is under discussion. We concentrate on the case when A(x) has only real zeros aj and, in contrast to a classical result of Heine and Stieltjes which concerns the case of positive coefficients rj in the partial fraction decomposition B(x)/A(x) = ∑j p=0 rj/(x - aj), we allow the presence of both positive and negative coefficients rj. The corresponding electrostatic interpretation of the zeros of the solution y(x) as points of equilibrium in an electrostatic field generated by charges rj at aj is given. As an application we prove that the zeros of the Gegenbauer-Laurent polynomials are the points of unique equilibrium in a field generated by two positive and two negative charges. © 2000 American Mathematical Society.en
dc.description.affiliationDepartamento de Ciências de Computação e EstatíStica Universidade Estadual Paulista, 15054-000 Sao Jose, Rio Preto, SP
dc.description.affiliationDepartment of Mathematics Katholieke Universiteit Leuven, Celestijnenlaan 200 B, B-3001 Heverlee (Leuven)
dc.description.affiliationUnespDepartamento de Ciências de Computação e EstatíStica Universidade Estadual Paulista, 15054-000 Sao Jose, Rio Preto, SP
dc.format.extent3621-3628
dc.identifierhttp://dx.doi.org/10.1090/S0002-9939-00-05638-0
dc.identifier.citationProceedings of the American Mathematical Society, v. 128, n. 12, p. 3621-3628, 2000.
dc.identifier.doi10.1090/S0002-9939-00-05638-0
dc.identifier.file2-s2.0-23044522838.pdf
dc.identifier.issn0002-9939
dc.identifier.scopus2-s2.0-23044522838
dc.identifier.urihttp://hdl.handle.net/11449/66323
dc.identifier.wosWOS:000089527300023
dc.language.isoeng
dc.relation.ispartofProceedings of the American Mathematical Society
dc.relation.ispartofjcr0.707
dc.relation.ispartofsjr1,183
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectElectrostatic equilibrium
dc.subjectGegenbauer polynomials
dc.subjectLamé differential equation
dc.subjectLaurent polynomials
dc.titleLamé differential equations and electrostaticsen
dc.typeArtigo
dcterms.licensehttp://www.ams.org/publications/authors/ctp
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-23044522838.pdf
Tamanho:
162.32 KB
Formato:
Adobe Portable Document Format