Aplicação de redes neurais na estimação da temperatura interna de transformadores de distribuição imersos em óleo
Carregando...
Data
2002-09-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Sociedade Brasileira de Automática
Tipo
Artigo
Direito de acesso
Acesso aberto
Resumo
Resumo (português)
Neste artigo, os sinais de temperatura ambiente e de carregamento de transformadores de distribuição imersos em óleo são aplicados em uma arquitetura de redes neurais artificiais com o objetivo de estimar a temperatura interna destes transformadores. A arquitetura da rede neural utilizada nesta aplicação é do tipo perceptron multicamadas. O treinamento da rede foi realizado através do algoritmo de retropropagação denominado ''Resilient Propagation'' e foi baseado em dados de projeto e de ensaios de transformadores de distribuição imersos em óleo. Resultados de simulação da abordagem proposta indicam que esta metodologia pode ser utilizada eficientemente nos processos de proteção de transformadores, incrementando a seletividade, confiabilidade e o gerenciamento da rede de distribuição.
Resumo (inglês)
In this paper, the ambient temperature values and load signals are applied in an architecture of artificial neural network with the objective of estimating the internal temperature of oil-immersed distribution transformers. The architecture of neural network used in this application is a multilayer perceptron. The training of the network was carried-out using the ''Resilient Propagation'' algorithm and it was based on design details and experimental data relative to the oil-immersed distribution transformers. Simulation results of the proposed approach indicate that this methodology can be efficiently used in the protection processes of transformers, increasing the selectivity, reliability and the management of the electric energy distribution system.
Descrição
Idioma
Português
Como citar
Sba: Controle & Automação Sociedade Brasileira de Automatica. Sociedade Brasileira de Automática, v. 13, n. 3, p. 266-274, 2002.