Detecção e classificação de falhas estruturais de um sistema mecânico por meio de uma rede neural artificial

Carregando...
Imagem de Miniatura

Data

2019-05-31

Orientador

Chavarette, Fábio Roberto
Lopes, Mara Lúcia Martins

Coorientador

Pós-graduação

Engenharia Mecânica - FEIS

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Tipo

Dissertação de mestrado

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Resumo (português)

Redes Neurais Artificiais (RNAs) são algoritmos de aprendizado, geralmente estruturados em torno de categorização de dados de entrada e/ou seu agrupamento por similaridade. Tendo em vista características desejáveis como aprendizado rápido e estabilidade frente a vetores de entrada altamente mutáveis, adotou-se uma RNA do tipo Fuzzy ARTMAP como mecanismo central de um método de monitoramento de saúde estrutural para detectar e categorizar falhas em dados experimentais provenientes de um sistema mecânico similar a um pequeno prédio de dois andares. Mais especificamente, com o objetivo de detectar alterações das frequências naturais da estrutura, fenômeno ligado à deterioração da mesma, e determinar qual(is) andar(es) está(ão) ligado(s) ao comportamento anômalo, se detectado. A acurácia da rede foi avaliada, sendo realizado um estudo da quantidade de dados necessárias para o desempenho satisfatório da rede. Observou-se desempenho satisfatório, a acurácia do método tendendo a aproximadamente 94% a partir de certas quantidades de dados.

Resumo (inglês)

Artificial Neural Networks (ANNs) are learning algorithms, largely revolving around categorizing data sets based on measures of similarity between its members. Due to desirable characteristics such as fast learning and stability when dealing with highly mutable input vectors, a Fuzzy ARTMAP ANN was selected as the core mechanism of a structural health monitoring method. Its goal was to detect and categorize faults in experimental data collected from a mechanical system akin to a small two-story building. More specifically, to detect disturbances on the structure's natural frequencies, phenomenon linked to its deterioration, and to determine which story or stories are linked to anomalous behavior, if any. The accuracy of the method was evaluated, and the amount of data needed for optimal operation was determined. Satisfactory performance was observed; the method's accuracy tended towards 94% with enough training samples.

Descrição

Idioma

Português

Como citar

Itens relacionados