Skin lesion computational diagnosis of dermoscopic images: Ensemble models based on input feature manipulation
dc.contributor.author | Oliveira, Roberta B. | |
dc.contributor.author | Pereira, Aledir S. [UNESP] | |
dc.contributor.author | Tavares, Joao Manuel R. S. | |
dc.contributor.institution | Univ Porto | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-11-26T17:40:28Z | |
dc.date.available | 2018-11-26T17:40:28Z | |
dc.date.issued | 2017-10-01 | |
dc.description.abstract | Background and objectives: The number of deaths worldwide due to melanoma has risen in recent times, in part because melanoma is the most aggressive type of skin cancer. Computational systems have been developed to assist dermatologists in early diagnosis of skin cancer, or even to monitor skin lesions. However, there still remains a challenge to improve classifiers for the diagnosis of such skin lesions. The main objective of this article is to evaluate different ensemble classification models based on input feature manipulation to diagnose skin lesions. Methods: Input feature manipulation processes are based on feature subset selections from shape properties, colour variation and texture analysis to generate diversity for the ensemble models. Three subset selection models are presented here: (1) a subset selection model based on specific feature groups, (2) a correlation-based subset selection model, and (3) a subset selection model based on feature selection algorithms. Each ensemble classification model is generated using an optimum-path forest classifier and integrated with a majority voting strategy. The proposed models were applied on a set of 1104 dermoscopic images using a cross-validation procedure. Results: The best results were obtained by the first ensemble classification model that generates a feature subset ensemble based on specific feature groups. The skin lesion diagnosis computational system achieved 94.3% accuracy, 91.8% sensitivity and 96.7% specificity. Conclusions: The input feature manipulation process based on specific feature subsets generated the greatest diversity for the ensemble classification model with very promising results. (C) 2017 Elsevier B.V. All rights reserved. | en |
dc.description.affiliation | Univ Porto, Fac Engn, Dept Engn Mecan, Inst Ciencia & Inovacao Engn Mecan & Engn Ind, Rua Dr Roberto Frias, P-4200465 Oporto, Portugal | |
dc.description.affiliation | Univ Estadual Paulista, Inst Biociencias Letras & Ciencias Exatas, Dept Ciencias Comp & Estat, Rua Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Inst Biociencias Letras & Ciencias Exatas, Dept Ciencias Comp & Estat, Rua Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil | |
dc.description.sponsorship | Programa Operacional Regional do Norte (NORTE), through Fundo Europeu de Desenvolvimento Regional (FEDER) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | Programa Operacional Regional do Norte (NORTE), through Fundo Europeu de Desenvolvimento Regional (FEDER): NORTE-01-0145-FEDER-000022 | |
dc.format.extent | 43-53 | |
dc.identifier | http://dx.doi.org/10.1016/j.cmpb.2017.07.009 | |
dc.identifier.citation | Computer Methods And Programs In Biomedicine. Clare: Elsevier Ireland Ltd, v. 149, p. 43-53, 2017. | |
dc.identifier.doi | 10.1016/j.cmpb.2017.07.009 | |
dc.identifier.file | WOS000409155400006.pdf | |
dc.identifier.issn | 0169-2607 | |
dc.identifier.uri | http://hdl.handle.net/11449/163195 | |
dc.identifier.wos | WOS:000409155400006 | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.ispartof | Computer Methods And Programs In Biomedicine | |
dc.relation.ispartofsjr | 0,786 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Image classification | |
dc.subject | Feature extraction | |
dc.subject | Feature selection | |
dc.subject | Ensemble of classifiers | |
dc.subject | Computational diagnosis | |
dc.title | Skin lesion computational diagnosis of dermoscopic images: Ensemble models based on input feature manipulation | en |
dc.type | Artigo | |
dcterms.license | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dcterms.rightsHolder | Elsevier B.V. | |
unesp.campus | Universidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Ciências da Computação e Estatística - IBILCE | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- WOS000409155400006.pdf
- Tamanho:
- 978.57 KB
- Formato:
- Adobe Portable Document Format
- Descrição: