Band Gap Narrowing of Bi-Doped NaTaO3 for Photocatalytic Hydrogen Evolution under Simulated Sunlight: A Pseudocubic Phase Induced by Doping

dc.contributor.authorAlves, Gustavo A. S.
dc.contributor.authorCenturion, Higor A.
dc.contributor.authorSambrano, Julio R. [UNESP]
dc.contributor.authorFerrer, Mateus M.
dc.contributor.authorGoncalves, Renato
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Fed Pelotas
dc.date.accessioned2021-06-25T11:50:22Z
dc.date.available2021-06-25T11:50:22Z
dc.date.issued2021-01-25
dc.description.abstractNaTaO3 is a promising material for the production of hydrogen fuel via photocatalytic water splitting, although the wide band gap prevents its application with solar light. In order to overcome this issue, bismuth doping has been proposed as a method for band gap narrowing by introducing midgap electron states. In this work, Bi-doped NaTaO3 nanocubes were synthesized through a facile molten salt method and the photocatalysts exhibit hydrogen evolution under simulated sunlight irradiation (AM 1.5G). X-ray diffraction, Raman, and UV-vis spectra suggest that the incorporation of Bi3+ at the Ta-site induces band gap narrowing, in addition to a structural transition, as the orthorhombic perovskite lattice becomes pseudocubic at low dopant concentrations (0.5-4 mol %). The optimal photocatalytic activity of 3 mol % Bi-doped NaTaO3 may be a result of the simultaneous presence of the pseudocubic lattice and the narrowed band gap of 3.6 eV, which in turn promote the absorption of ultraviolet light from the AM 1.5G irradiation source. Theoretical simulations based on density functional theory were used in conjunction with the experimental results to present in detail the additional contribution of the doped pseudocubic phase in the system. Furthermore, 3 mol % Bi-doped NaTaO3 was loaded with Ni cocatalysts by magnetron sputtering deposition, leading to enhanced and stable H-2 production rates for more than 100 h of reaction.en
dc.description.affiliationUniv Sao Paulo, Sao Carlos Inst Phys, BR-13560970 Sao Carlos, SP, Brazil
dc.description.affiliationSao Paulo State Univ, Modeling & Mol Simulat Grp, BR-17030360 Bauru, SP, Brazil
dc.description.affiliationUniv Fed Pelotas, CCAF, PPGCEM CDTec, BR-96010610 Pelotas, RS, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Modeling & Mol Simulat Grp, BR-17030360 Bauru, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipNational Centre for Energy and Materials Research (CNPEM)
dc.description.sponsorshipBrazilian Nanotechnology National Laboratory (LNNano)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2017/18716-3
dc.description.sponsorshipIdFAPESP: 2018/25705-0
dc.description.sponsorshipIdBrazilian Nanotechnology National Laboratory (LNNano): TEM-C1-27122-F
dc.description.sponsorshipIdFAPESP: 2019/08928-9
dc.description.sponsorshipIdCNPq: 432242/2018-0
dc.format.extent671-679
dc.identifierhttp://dx.doi.org/10.1021/acsaem.0c02547
dc.identifier.citationAcs Applied Energy Materials. Washington: Amer Chemical Soc, v. 4, n. 1, p. 671-679, 2021.
dc.identifier.doi10.1021/acsaem.0c02547
dc.identifier.issn2574-0962
dc.identifier.urihttp://hdl.handle.net/11449/209165
dc.identifier.wosWOS:000613720100074
dc.language.isoeng
dc.publisherAmer Chemical Soc
dc.relation.ispartofAcs Applied Energy Materials
dc.sourceWeb of Science
dc.subjectphotocatalytic water splitting
dc.subjectsodium tantalate
dc.subjectperovskite oxide
dc.subjectdoping
dc.subjectphase transition
dc.subjectsimulated sunlight
dc.titleBand Gap Narrowing of Bi-Doped NaTaO3 for Photocatalytic Hydrogen Evolution under Simulated Sunlight: A Pseudocubic Phase Induced by Dopingen
dc.typeArtigo
dcterms.rightsHolderAmer Chemical Soc

Arquivos

Coleções