Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Damage detection in an uncertain nonlinear beam based on stochastic Volterra series: An experimental application

dc.contributor.authorVillani, Luis G.G. [UNESP]
dc.contributor.authorda Silva, Samuel [UNESP]
dc.contributor.authorCunha, Americo
dc.contributor.authorTodd, Michael D.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade do Estado do Rio de Janeiro (UERJ)
dc.contributor.institutionUCSD – University of California San Diego
dc.date.accessioned2019-10-06T16:26:58Z
dc.date.available2019-10-06T16:26:58Z
dc.date.issued2019-08-01
dc.description.abstractThe damage detection problem becomes a more difficult task when the intrinsically nonlinear behavior of the structures and the natural data variation are considered in the analysis because both phenomena can be confused with damage if linear and deterministic approaches are implemented. Therefore, this work aims the experimental application of a stochastic version of the Volterra series combined with a novelty detection approach to detect damage in an initially nonlinear system taking into account the measured data variation, caused by the presence of uncertainties. The experimental setup is composed by a cantilever beam operating in a nonlinear regime of motion, even in the healthy condition, induced by the presence of a magnet near to the free extremity. The damage associated with mass changes in a bolted connection (nuts loosed) is detected based on the comparison between linear and nonlinear contributions of the stochastic Volterra kernels in the total response, estimated in the reference and damaged conditions. The experimental measurements were performed on different days to add natural variation to the data measured. The results obtained through the stochastic proposed approach are compared with those obtained by the deterministic version of the Volterra series, showing the advantage of the stochastic model use when we consider the experimental data variation with the capability to detect the presence of the damage with statistical confidence. Besides, the nonlinear metric used presented a higher sensitivity to the occurrence of the damage compared with the linear one, justifying the application of a nonlinear metric when the system exhibits intrinsically nonlinear behavior.en
dc.description.affiliationUNESP – Universidade Estadual Paulista Faculdade de Engenharia de Ilha Solteira Departamento de Engenharia Mecânica, Av. Brasil, 56, Ilha Solteira
dc.description.affiliationUERJ – Universidade do Estado do Rio de Janeiro NUMERICO – Nucleus of Modeling and Experimentation with Computers, R. São Francisco Xavier, 524
dc.description.affiliationUCSD – University of California San Diego Department of Structural Engineering, 9500 Gilman Dr, La Jolla
dc.description.affiliationUnespUNESP – Universidade Estadual Paulista Faculdade de Engenharia de Ilha Solteira Departamento de Engenharia Mecânica, Av. Brasil, 56, Ilha Solteira
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)
dc.description.sponsorshipIdFAPESP: 2012/09135-3
dc.description.sponsorshipIdFAPESP: 2015/25676-2
dc.description.sponsorshipIdFAPESP: 2017/15512-8
dc.description.sponsorshipIdFAPESP: 2017/24977-4
dc.description.sponsorshipIdCNPq: 307520/2016-1
dc.description.sponsorshipIdFAPERJ: E-26/010.000.805/2018
dc.description.sponsorshipIdFAPERJ: E-26/010.002.178/2015
dc.format.extent463-478
dc.identifierhttp://dx.doi.org/10.1016/j.ymssp.2019.03.045
dc.identifier.citationMechanical Systems and Signal Processing, v. 128, p. 463-478.
dc.identifier.doi10.1016/j.ymssp.2019.03.045
dc.identifier.issn1096-1216
dc.identifier.issn0888-3270
dc.identifier.scopus2-s2.0-85064655289
dc.identifier.urihttp://hdl.handle.net/11449/189013
dc.language.isoeng
dc.relation.ispartofMechanical Systems and Signal Processing
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectDamage detection
dc.subjectNonlinear behavior
dc.subjectStochastic Volterra model
dc.subjectUncertainties
dc.titleDamage detection in an uncertain nonlinear beam based on stochastic Volterra series: An experimental applicationen
dc.typeArtigo
unesp.author.orcid0000-0001-6430-3746[2]
unesp.departmentEngenharia Mecânica - FEISpt

Arquivos