Additions of landscape metrics improve predictions of occurrence of species distribution models

dc.contributor.authorHasui, Érica
dc.contributor.authorSilva, Vinícius X.
dc.contributor.authorCunha, Rogério G. T.
dc.contributor.authorRamos, Flavio N.
dc.contributor.authorRibeiro, Milton C. [UNESP]
dc.contributor.authorSacramento, Mario
dc.contributor.authorCoelho, Marco T. P.
dc.contributor.authorPereira, Diego G. S.
dc.contributor.authorRibeiro, Bruno R.
dc.contributor.institutionUniversidade Federal de Alfenas
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de Goiás (UFG)
dc.contributor.institutionUniversidade Federal de Lavras (UFLA)
dc.contributor.institutionEstação de Hidrobiologia e Piscicultura de Furnas – EHPF
dc.date.accessioned2018-12-11T17:10:56Z
dc.date.available2018-12-11T17:10:56Z
dc.date.issued2017-09-01
dc.description.abstractSpecies distribution models are used to aid our understanding of the processes driving the spatial patterns of species’ habitats. This approach has received criticism, however, largely because it neglects landscape metrics. We examined the relative impacts of landscape predictors on the accuracy of habitat models by constructing distribution models at regional scales incorporating environmental variables (climate, topography, vegetation, and soil types) and secondary species occurrence data, and using them to predict the occurrence of 36 species in 15 forest fragments where we conducted rapid surveys. We then selected six landscape predictors at the landscape scale and ran general linear models of species presence/absence with either a single scale predictor (the probabilities of occurrence of the distribution models or landscape variables) or multiple scale predictors (distribution models + one landscape variable). Our results indicated that distribution models alone had poor predictive abilities but were improved when landscape predictors were added; the species responses were not, however, similar to the multiple scale predictors. Our study thus highlights the importance of considering landscape metrics to generate more accurate habitat suitability models.en
dc.description.affiliationLaboratório de Ecologia de Fragmentos Florestais (ECOFRAG) Instituto de Ciência da Natureza Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700
dc.description.affiliationLaboratório de Ecologia Espacial e Conservação (LEEC) Departamento de Ecologia UNESP, Rio Claro. Av. 24A, 1515
dc.description.affiliationPrograma de Pós-Graduação em Ecologia e Evolução da Universidade Federal de Goiás Universidade Federal de Goiás
dc.description.affiliationDepartamento de Ciências Florestais Universidade Federal de Lavras, Câmpus Universitário, Caixa Postal 3037
dc.description.affiliationEstação de Hidrobiologia e Piscicultura de Furnas – EHPF, Rua Lavras, 288 Bairro de Furnas
dc.description.affiliationUnespLaboratório de Ecologia Espacial e Conservação (LEEC) Departamento de Ecologia UNESP, Rio Claro. Av. 24A, 1515
dc.format.extent963-974
dc.identifierhttp://dx.doi.org/10.1007/s11676-017-0388-5
dc.identifier.citationJournal of Forestry Research, v. 28, n. 5, p. 963-974, 2017.
dc.identifier.doi10.1007/s11676-017-0388-5
dc.identifier.file2-s2.0-85016560633.pdf
dc.identifier.issn1993-0607
dc.identifier.issn1007-662X
dc.identifier.scopus2-s2.0-85016560633
dc.identifier.urihttp://hdl.handle.net/11449/174401
dc.language.isoeng
dc.relation.ispartofJournal of Forestry Research
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectEcological niche model
dc.subjectGeneralized linear models
dc.subjectHabitat suitability
dc.subjectLandscape structure
dc.subjectMaxent
dc.titleAdditions of landscape metrics improve predictions of occurrence of species distribution modelsen
dc.typeArtigo
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências, Rio Claropt
unesp.departmentEcologia - IBpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85016560633.pdf
Tamanho:
534.07 KB
Formato:
Adobe Portable Document Format
Descrição: