Modelos Bayesianos hierárquicos espaciais para mapeamento de doenças - metodologia INLA - com aplicações em casos de Dengue e Chikungunya

dc.contributor.advisorGovone, José Silvio [UNESP]
dc.contributor.authorDomingues, Jacqueline [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-04-28T13:20:27Z
dc.date.available2021-04-28T13:20:27Z
dc.date.issued2021-02-26
dc.description.abstractModelos hierárquicos Bayesianos espaciais vem sendo amplamente utilizados para o mapeamento de doenças e, neste trabalho, objetivou-se analisar diferentes estruturas para o parâmetro espacial que compõe o modelo, como a recente reparametrização do clássico CAR, proposta por Simpson et al. (2015), a qual apresenta maior facilidade em definir e interpretar as distribuições a priori escolhidas. Além disso, analisou-se duas diferentes metodologias, o método de simulação, Monte Carlo via cadeia de Markov - MCMC e a Integrated Nested Laplace Approximations - INLA, determinístico e bastante flexível, que utiliza aproximação de Laplace aninhada simplificada para calcular diretamente aproximações muito precisas para as distribuições marginais posteriores. Foram realizados estudos tanto em conjuntos de dados simulados, quanto em duas aplicações em epidemiologia: dados de ocorrências de Dengue e de ocorrências de Chikungunya, no Estado de São Paulo. Comparou-se também o desempenho de ambas as metodologias para dois cenários distintos, um de completa independência espacial e um de dependência espacial, as quais apresentaram resultados semelhantes. As conclusões são inovadoras e indicam que o INLA é tão bom quanto o MCMC para o ajuste de tais modelos e nas aplicações epidemiológicas notou-se que a Dengue e a Chikungunya, apesar de apresentarem o Aedes aegypti como vetor transmissor comum, possuem padrões espaciais diferentes, o que indica a possibilidade de um outro vetor, o Aedes albopictus ter maior influência na incidência de Chikungunya, por exemplo. Tais análises permitem que novas hipóteses sejam exploradas visto que não se tem conhecimento de trabalhos realizados neste contexto e em conjuntos de dados semelhantes aos aqui utilizados.pt
dc.description.abstractCurrently, Bayesian spatial hierarchical models have been widely used for diseases mapping, and this work aimed to analyze several structures for the spatially structured parameter, such as the recent reparameterization of the classic CAR, proposed by Simpson et al. (2015), which is easier to define and to interpret the priori distributions chosen. Two different methodologies were also analyzed, the widely used simulation method, Monte Carlo via Markov chain - MCMC and the Integrated Nested Laplace Approximations - INLA, deterministic and very flexible, which uses a simplified nested Laplace approximation to calculate very precise approximations for the posterior marginal distributions. Studies were carried out in simulated data sets and in two epidemiology applications: Dengue and Chikungunya occurrences data, in the State of São Paulo. The conclusions are innovative, since there is no knowledge of work done in this context and in similar data sets that were used here. We also compared the performance of both methodologies for two different scenarios, one of complete spatial independence and one of spatial dependence, which presented similar results.en
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCAPES: 001
dc.identifier.capes33004064083P2
dc.identifier.urihttp://hdl.handle.net/11449/204530
dc.language.isopor
dc.publisherUniversidade Estadual Paulista (Unesp)
dc.rights.accessRightsAcesso aberto
dc.subjectMapeamento de doençaspt
dc.subjectModelos Bayesianos hierárquicospt
dc.subjectEstatística espacialpt
dc.subjectDenguept
dc.subjectChikungunyapt
dc.subjectINLApt
dc.titleModelos Bayesianos hierárquicos espaciais para mapeamento de doenças - metodologia INLA - com aplicações em casos de Dengue e Chikungunyapt
dc.title.alternativeSpatial hierarchical Bayesian models for disease mapping - INLA methodology - Applications of Dengue and Chikungunya virusesen
dc.typeTese de doutorado
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências, Botucatupt
unesp.embargoOnlinept
unesp.examinationboard.typeBanca públicapt
unesp.graduateProgramBiometria - IBBpt
unesp.knowledgeAreaBiometriapt
unesp.researchAreaMapeamento de doenças, epidemiologia, estatística Bayesiana espacial.pt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
domingues_j_dr_bot.pdf
Tamanho:
1.45 MB
Formato:
Adobe Portable Document Format
Descrição:

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
3.04 KB
Formato:
Item-specific license agreed upon to submission
Descrição: