Designing Highly Photoactive Hybrid Aerogels for In-Flow Photocatalytic Contaminant Removal Using Silica-Coated Bacterial Nanocellulose Supports

Nenhuma Miniatura disponível

Data

2023-05-17

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

This study explores the use of silica-coated bacterial nanocellulose (BC) scaffolds with bulk macroscopic yet nanometric internal pores/structures as functional supports for high surface area titania aerogel photocatalysts to design flexible, self-standing, porous, and recyclable BC@SiO2-TiO2 hybrid organic-inorganic aerogel membranes for effective in-flow photo-assisted removal of organic pollutants. The hybrid aerogels were prepared by sequential sol-gel deposition of the SiO2 layer over BC, followed by coating of the resulting BC@SiO2 membranes with a porous titania aerogel overlayer of high surface area using epoxide-driven gelation, hydrothermal crystallization, and subsequent supercritical drying. The silica interlayer between the nanocellulose biopolymer scaffold and the titania photocatalyst was found to greatly influence the structure and composition, particularly the TiO2 loading, of the prepared hybrid aerogel membranes, allowing the development of photochemically stable aerogel materials with increased surface area/pore volume and higher photocatalytic activity. The optimized BC@SiO2-TiO2 hybrid aerogel showed up to 12 times faster in-flow photocatalytic removal of methylene blue dye from aqueous solution in comparison with bare BC/TiO2 aerogels and outperformed most of the supported-titania materials reported earlier. Moreover, the developed hybrid aerogels were successfully employed to remove sertraline drug, a model emergent contaminant, from aqueous solution, thus further demonstrating their potential for water purification.

Descrição

Idioma

Inglês

Como citar

ACS Applied Materials and Interfaces, v. 15, n. 19, p. 23146-23159, 2023.

Itens relacionados