Understanding the Microstructure Connectivity in Photopolymerizable Aluminum-Phosphate-Silicate Sol-Gel Hybrid Materials for Additive Manufacturing

dc.contributor.authorTayama, Gabriel Toshiaki [UNESP]
dc.contributor.authorSantagneli, Silvia Helena [UNESP]
dc.contributor.authorde Oliveira Junior, Marcos
dc.contributor.authorMessaddeq, Younes [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionPhotonique et Laser─COPL─Universite Laval
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2023-07-29T16:04:51Z
dc.date.available2023-07-29T16:04:51Z
dc.date.issued2023-02-09
dc.description.abstractIn this paper, we report the synthesis and structural characterization of transparent and photopolymerizable aluminum-phosphate-silicate hybrid materials obtained via the sol-gel route, with different aluminum/phosphate (Al/P) ratios. We explored the system Si(1-x)-(Al/P) (x) with x varying from 0.3 to 1, and atomic ratios of Al/P are 1:3, 1:1, and 3:1. All compositions contain high inorganic mass content (up to 40 wt %). Furthermore, they are compatible with vat-photopolymerization platforms. The structural evolution of the hybrid materials with the silicon concentration was investigated by SEM, phase-contrast AFM, and solid-state NMR techniques, using single- and double-resonance experiments. The structure follows the build-up principle using aluminum-phosphate species and alkoxysilane chains as fundamental building blocks. These aluminum-phosphate species were identified as monomeric and dimeric chain structures by comparing different parameters obtained from NMR data to compound models. Monomeric and dimeric aluminum-phosphate chain structures were predominant in 3:1 and 1:3 Al/P ratio samples, respectively, promoting and hindering the heterocondensation with the alkoxysilane precursor, respectively. The photopolymerization mechanism leads to the percolation of the inorganic networks through a parallel polymethylmethacrylate network, resulting in a material with structural heterogeneities in the range of 5 nm, evidenced by phase-contrast AFM.en
dc.description.affiliationChemistry Institute São Paulo State University─UNESP, Rua Francisco Degni 55, Araraquara
dc.description.affiliationCentre de Optique Photonique et Laser─COPL─Universite Laval, 2375 rue de la Terrase
dc.description.affiliationSão Carlos Institute of Physics University of São Paulo, São Carlos
dc.description.affiliationUnespChemistry Institute São Paulo State University─UNESP, Rua Francisco Degni 55, Araraquara
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada
dc.description.sponsorshipThe Research Council
dc.format.extent2416-2429
dc.identifierhttp://dx.doi.org/10.1021/acs.jpcc.2c08027
dc.identifier.citationJournal of Physical Chemistry C, v. 127, n. 5, p. 2416-2429, 2023.
dc.identifier.doi10.1021/acs.jpcc.2c08027
dc.identifier.issn1932-7455
dc.identifier.issn1932-7447
dc.identifier.scopus2-s2.0-85147262232
dc.identifier.urihttp://hdl.handle.net/11449/249627
dc.language.isoeng
dc.relation.ispartofJournal of Physical Chemistry C
dc.sourceScopus
dc.titleUnderstanding the Microstructure Connectivity in Photopolymerizable Aluminum-Phosphate-Silicate Sol-Gel Hybrid Materials for Additive Manufacturingen
dc.typeArtigo
unesp.author.orcid0000-0002-4710-0442 0000-0002-4710-0442[1]
unesp.author.orcid0000-0001-6538-2204[3]
unesp.author.orcid0000-0002-0868-2726 0000-0002-0868-2726[4]

Arquivos