A fast algorithm for simulation of periodic flows using discrete vortex particles
Carregando...
Arquivos
Data
2017-11-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Springer
Tipo
Artigo
Direito de acesso
Acesso aberto
Resumo
We present a novel fast algorithm for flow simulations using the discrete vortex method, DVM, for problems with periodic boundary conditions. In the DVM, the solution of the velocity field induced by interactions among N discrete vortex particles is governed by the Biot-Savart law and, therefore, leads to a computational cost proportional to O(). The proposed algorithm combines exponential and power series expansions implemented using a divide and conquer strategy to accelerate the calculation of the cotangent kernel that models periodic boundary conditions. The fast multipole method, FMM, is applied for the solution of singular terms appearing in the power series expansion and also for the exponential series expansion. Error and computational cost analyses are performed for the individual steps of the algorithm for double and quadruple machine precision. The current method presents more accurate solutions when compared to those obtained by periodic domain replication using the free-field FMM kernel. The novel algorithm provides computational savings of nearly 240 times for double-precision simulations with one million particles when compared to the direct calculation of the Biot-Savart law.
Descrição
Idioma
Inglês
Como citar
Journal Of The Brazilian Society Of Mechanical Sciences And Engineering. Heidelberg: Springer Heidelberg, v. 39, n. 11, p. 4555-4570, 2017.