High Coverage of H2, CH4, NH3 and H2O on (110) SnO2 Nanotubes

dc.contributor.authorSilva, Júnio César Fonseca
dc.contributor.authordos Santos, José Divino
dc.contributor.authorJunior, Jorge Luiz Costa
dc.contributor.authorTaft, Carlton A.
dc.contributor.authorMartins, João Batista Lopes
dc.contributor.authorLongo, Elson [UNESP]
dc.contributor.institutionUEG
dc.contributor.institutionCentro Brasileiro de Pesquisas Físicas
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade de Brasília (UnB)
dc.date.accessioned2022-05-01T15:46:14Z
dc.date.available2022-05-01T15:46:14Z
dc.date.issued2020-01-01
dc.description.abstractWe start with short review of inorganic nanotubes leading to gas sensors, which among others, can be important application of semiconductor oxides. We investigate the interaction of H2, CH4, NH3 and H2O gases at high internal and external coverage with the [(SnO2)18]3 nanotube designed from the (110) plane of SnO2 in the rutile structure. We have used the PM7 and DFT methods, and B3LYP as the functional with Huzinaga and LANL2DZ basis sets to determine adsorption energies, interatomic distances, LUMO, HOMO, energy gaps and hardness. DFT was used in order to investigate these systems formed by the high coverage of internal and external adsorbed gases on the nanotube. The adsorption energies, and inter/intra atomic distances indicate stronger interaction of the nanotube with the NH3 and H2O gases. Our calculated adsorption energies, interaction distances, energy gaps and sensitivity trends are in agreement with reported theoretical and experimental values. For these large systems (~1000 atoms), it is observed that the selected computational methods, despite their lower computational demand, can provide satisfactory physical/chemical insights. The intermolecular distances of the adsorbed gas suggest hydrogen bonding among the adsorbed gases of H2O and NH3 which helps to stabilize the interaction process.en
dc.description.affiliationUEG, Br 153, 3105, CP 459, 75132-903
dc.description.affiliationCBPF Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150
dc.description.affiliationUniversidade Estadual Paulista UNESP LIEC, SP
dc.description.affiliationInstituto de Química UnB Universidade de Brasília, Campus Universitário Darcy Ribeiro, DF
dc.description.affiliationUnespUniversidade Estadual Paulista UNESP LIEC, SP
dc.format.extent169-188
dc.identifierhttp://dx.doi.org/10.1007/978-3-030-31403-3_6
dc.identifier.citationEngineering Materials, p. 169-188.
dc.identifier.doi10.1007/978-3-030-31403-3_6
dc.identifier.issn1868-1212
dc.identifier.issn1612-1317
dc.identifier.scopus2-s2.0-85126672843
dc.identifier.urihttp://hdl.handle.net/11449/234289
dc.language.isoeng
dc.relation.ispartofEngineering Materials
dc.sourceScopus
dc.subjectAb initio
dc.subjectDFT
dc.subjectGas sensors
dc.subjectInorganic nanotubes
dc.subjectInteraction with gases
dc.subjectSimulation models
dc.subjectTin Dioxide
dc.titleHigh Coverage of H2, CH4, NH3 and H2O on (110) SnO2 Nanotubesen
dc.typeCapítulo de livro
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Química, Araraquarapt
unesp.departmentBioquímica e Tecnologia - IQpt

Arquivos