Barrier properties of high performance PMMA-silica anticorrosion coatings

dc.contributor.authorTrentin, Andressa [UNESP]
dc.contributor.authorde L. Gasparini, Andressa [UNESP]
dc.contributor.authorFaria, Flávio A. [UNESP]
dc.contributor.authorHarb, Samarah V. [UNESP]
dc.contributor.authordos Santos, Fábio C. [UNESP]
dc.contributor.authorPulcinelli, Sandra H. [UNESP]
dc.contributor.authorSantilli, Celso V. [UNESP]
dc.contributor.authorHammer, Peter [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-12T02:28:31Z
dc.date.available2020-12-12T02:28:31Z
dc.date.issued2020-01-01
dc.description.abstractThis work reports a detailed investigation of the structural and electrochemical barrier properties of PMMA-silica coatings. Hybrid nanocomposites were prepared by combining the sol-gel method with the polymerization of methyl methacrylate (MMA), using the thermal initiator benzoyl peroxide (BPO), followed by the hydrolytic condensation of tetraethoxysilane (TEOS) and 3-(trimethoxysilyl)propyl methacrylate. Raman spectroscopy and thermal analysis showed that the fine-tuning of the BPO amount, a critical synthesis parameter, improved the polymerization efficiency of MMA, leading to a highly cross-linked hybrid structure. The homogeneous coatings prepared under optimized synthesis conditions presented elevated thermal stability due to improved polymerization of the organic phase. Electrochemical impedance spectroscopy (EIS) showed a quasi-ideal capacitive impedance response in 3.5% NaCl solution, with low frequency impedance modulus of up to 10 GΩ cm2, which remained essentially unchanged during 19 months of immersion. This notable barrier property was modeled by fitting the EIS curves assuming slowly expanding electrolyte uptake, using the two-layer Young approach, and by comparison with the standard equivalent electrical circuit (EEC/CPE) model. The Young model provided valuable information on the time evolution of physical parameters including the thickness of the uptake zone, the conductivity depth-profile and the dielectric constant, among others, evidencing the high performance of the coatings.en
dc.description.affiliationSão Paulo State University (UNESP) Institute of Chemistry
dc.description.affiliationUnespSão Paulo State University (UNESP) Institute of Chemistry
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdFAPESP: 2014/12182-9
dc.description.sponsorshipIdFAPESP: 2015/09342-7
dc.description.sponsorshipIdFAPESP: 2015/11907-2
dc.description.sponsorshipIdCNPq: 307905/2018-7
dc.description.sponsorshipIdCNPq: 424133/2016-4
dc.description.sponsorshipIdCAPES: 465593/2014-3
dc.identifierhttp://dx.doi.org/10.1016/j.porgcoat.2019.105398
dc.identifier.citationProgress in Organic Coatings, v. 138.
dc.identifier.doi10.1016/j.porgcoat.2019.105398
dc.identifier.issn0300-9440
dc.identifier.lattes5584298681870865
dc.identifier.orcid0000-0002-8356-8093
dc.identifier.scopus2-s2.0-85074035484
dc.identifier.urihttp://hdl.handle.net/11449/201275
dc.language.isoeng
dc.relation.ispartofProgress in Organic Coatings
dc.sourceScopus
dc.subjectAnticorrosion coating
dc.subjectBarrier properties
dc.subjectOrganic-inorganic hybrid
dc.subjectSol-gel process
dc.subjectYoung model
dc.titleBarrier properties of high performance PMMA-silica anticorrosion coatingsen
dc.typeArtigo
unesp.author.lattes5584298681870865[7]
unesp.author.orcid0000-0002-3823-0050[8]
unesp.author.orcid0000-0002-8356-8093[7]

Arquivos