On limit cycles in regularized Filippov systems bifurcating from homoclinic-like connections to regular-tangential singularities

Nenhuma Miniatura disponível

Data

2022-12-15

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

In this paper, we are concerned about smoothing of Filippov systems around homoclinic-like connections to regular-tangential singularities. We provide conditions to guarantee the existence of limit cycles bifurcating from such connections. Additional conditions are also provided to ensure the stability and uniqueness of such limit cycles. All the proofs are based on the construction of the first return map of the regularized Filippov system around homoclinic-like connections. Such a map is obtained by using a recent characterization of the local behavior of the regularized Filippov system around regular-tangential singularities. Fixed point theorems and Poincaré–Bendixson arguments are also employed.

Descrição

Idioma

Inglês

Como citar

Physica D: Nonlinear Phenomena, v. 442.

Itens relacionados

Coleções