Faraday waves in Bose-Einstein condensates with engineering three-body interactions
Carregando...
Arquivos
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
We consider Bose-Einstein condensates with two- and three-body interactions periodically varying in time. Two models of time-dependent three-body interactions, with quadratic and quartic dependence on the two-body atomic scattering length a s, are studied. It is shown that parametric instabilities in the condensate lead to the generation of Faraday waves (FWs), with wavelengths depending on the background scattering length, as well as on the frequency and amplitude of the modulations of a s. From an experimental perspective, this opens a new possibility to tune the period of Faraday patterns by varying not only the frequency of modulations and background scattering length, but also the amplitude of the modulations. The latter effect can be used to estimate the parameters of three-body interactions from the FW experimental results. Theoretical predictions are confirmed by numerical simulations of the corresponding extended Gross-Pitaevskii equation.
Descrição
Palavras-chave
BEC in periodic nonlinear potentials, Bose-Einstein condensate, dynamic properties of condensates, Faraday waves
Idioma
Inglês
Citação
Journal of Physics B: Atomic, Molecular and Optical Physics, v. 49, n. 2, 2015.