Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

The bias in reversing the Box-Cox transformation in time series forecasting: An empirical study based on neural networks

dc.contributor.authorCosta, Alexandre Fructuoso da [UNESP]
dc.contributor.authorCrepaldi, Antonio Fernando [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-12-03T13:11:47Z
dc.date.available2014-12-03T13:11:47Z
dc.date.issued2014-07-20
dc.description.abstractThe Box-Cox transformation is a technique mostly utilized to turn the probabilistic distribution of a time series data into approximately normal. And this helps statistical and neural models to perform more accurate forecastings. However, it introduces a bias when the reversion of the transformation is conducted with the predicted data. The statistical methods to perform a bias-free reversion require, necessarily, the assumption of Gaussianity of the transformed data distribution, which is a rare event in real-world time series. So, the aim of this study was to provide an effective method of removing the bias when the reversion of the Box-Cox transformation is executed. Thus, the developed method is based on a focused time lagged feedforward neural network, which does not require any assumption about the transformed data distribution. Therefore, to evaluate the performance of the proposed method, numerical simulations were conducted and the Mean Absolute Percentage Error, the Theil Inequality Index and the Signal-to-Noise ratio of 20-step-ahead forecasts of 40 time series were compared, and the results obtained indicate that the proposed reversion method is valid and justifies new studies. (C) 2014 Elsevier B.V. All rights reserved.en
dc.description.affiliationUniv Estadual Paulista, UNESP, Fac Engn Baum, Dept Prod Engn, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Fac Engn Baum, Dept Prod Engn, BR-17033360 Bauru, SP, Brazil
dc.format.extent281-288
dc.identifierhttp://dx.doi.org/10.1016/j.neucom.2014.01.004
dc.identifier.citationNeurocomputing. Amsterdam: Elsevier Science Bv, v. 136, p. 281-288, 2014.
dc.identifier.doi10.1016/j.neucom.2014.01.004
dc.identifier.issn0925-2312
dc.identifier.lattes9211187637499715
dc.identifier.urihttp://hdl.handle.net/11449/113544
dc.identifier.wosWOS:000335708800028
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofNeurocomputing
dc.relation.ispartofjcr3.241
dc.relation.ispartofsjr1,073
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectBox-Cox transformationen
dc.subjectNeural networksen
dc.subjectTime series forecastingen
dc.subjectFinancial marketsen
dc.titleThe bias in reversing the Box-Cox transformation in time series forecasting: An empirical study based on neural networksen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
unesp.author.lattes9211187637499715[2]
unesp.author.orcid0000-0002-9090-1835[2]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Engenharia, Baurupt
unesp.departmentEngenharia de Produção - FEBpt

Arquivos