Thermally activated exchange narrowing of the Gd3+ ESR fine structure in a single crystal of Ce1-xGdxFe 4P12 (x-0.001) skutterudite

dc.contributor.authorGarcia, F. A.
dc.contributor.authorVenegas, P. A. [UNESP]
dc.contributor.authorPagliuso, P. G.
dc.contributor.authorRettori, C.
dc.contributor.authorFisk, Z.
dc.contributor.authorSchlottmann, P.
dc.contributor.authorOseroff, S. B.
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.contributor.institutionUniversity of California
dc.contributor.institutionFlorida State University
dc.contributor.institutionSan Diego State University
dc.date.accessioned2022-04-29T01:14:04Z
dc.date.available2022-04-29T01:14:04Z
dc.date.issued2011-09-09
dc.description.abstractWe report electron spin resonance (ESR) measurements in the Gd3+ doped semiconducting filled skutterudite compound Ce1-xGd xFe4P12 (x-0.001). As the temperature T varies from T- 150 K to T- 165 K, the Gd3+ ESR fine and hyperfine structures coalesce into a broad inhomogeneous single resonance. At T- 200 K the line narrows and as T increases further, the resonance becomes homogeneous with a thermal broadening of 1.1(2) Oe/K. These results suggest that the origin of these features may be associated with a subtle interdependence of thermally activated mechanisms that combine: (i) an increase with T of the density of activated conduction carriers across the T-dependent semiconducting pseudogap; (ii) the Gd3+ Korringa relaxation process due to an exchange interaction JfdS.s between the Gd3+ localized magnetic moments and the thermally activated conduction carriers; and (iii) a relatively weak confining potential of the rare earth ions inside the oversized (Fe 2P3)4 cage, which allows the rare earths to become rattler Einstein oscillators above T- 148 K. We argue that the rattling of the Gd3+ ions, via a motional narrowing mechanism, also contributes to the coalescence of the ESR fine and hyperfine structure. © 2011 American Physical Society.en
dc.description.affiliationInstituto de Física Gleb Wataghin UNICAMP, C.P. 6165, Campinas-SP 13083-970
dc.description.affiliationUNESP-Universidade Estadual Paulista Departamento de Física Faculdade de Ciências, C.P. 473, Bauru-SP 17033-360
dc.description.affiliationCentro de Ciências Naturais e Humanas Universidade Federal Do ABC, Santo Andre-SP 09210-170
dc.description.affiliationUniversity of California, Irvine, CA 92697
dc.description.affiliationDepartment of Physics Florida State University, Tallahassee, FL 32306
dc.description.affiliationSan Diego State University, San Diego, CA 92182
dc.description.affiliationUnespUNESP-Universidade Estadual Paulista Departamento de Física Faculdade de Ciências, C.P. 473, Bauru-SP 17033-360
dc.identifierhttp://dx.doi.org/10.1103/PhysRevB.84.125116
dc.identifier.citationPhysical Review B - Condensed Matter and Materials Physics, v. 84, n. 12, 2011.
dc.identifier.doi10.1103/PhysRevB.84.125116
dc.identifier.issn1098-0121
dc.identifier.issn1550-235X
dc.identifier.scopus2-s2.0-80053911009
dc.identifier.urihttp://hdl.handle.net/11449/226555
dc.language.isoeng
dc.relation.ispartofPhysical Review B - Condensed Matter and Materials Physics
dc.sourceScopus
dc.titleThermally activated exchange narrowing of the Gd3+ ESR fine structure in a single crystal of Ce1-xGdxFe 4P12 (x-0.001) skutteruditeen
dc.typeArtigo
unesp.departmentFísica - FCpt

Arquivos