Well-posedness for the abstract Blackstock–Crighton–Westervelt equation

dc.contributor.authorGambera, Laura R. [UNESP]
dc.contributor.authorLizama, Carlos
dc.contributor.authorProkopczyk, Andréa [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidad de Santiago de Chile
dc.date.accessioned2020-12-12T01:23:01Z
dc.date.available2020-12-12T01:23:01Z
dc.date.issued2020-01-01
dc.description.abstractIn this paper, an abstract degenerate hyperbolic equation is considered that includes the semilinear Blackstock–Crighton–Westervelt equation. By proposing a new approach based on strongly continuous semigroups and resolvent families of operators, we prove an explicit representation of the strong and mild solutions for the linearized model by means of a kind of variation of parameters formula. Moreover, we show that under nonlocal initial conditions, the existence of a mild solution of the semilinear equation can be established.en
dc.description.affiliationInstitute of Biosciences Humanities and Exact Sciences (Ibilce) São Paulo State University (Unesp), Campus São José do Rio Preto
dc.description.affiliationDepartamento de Matemática y Ciencia de la Computación Universidad de Santiago de Chile, las Sophoras 173, Estación central
dc.description.affiliationUnespInstitute of Biosciences Humanities and Exact Sciences (Ibilce) São Paulo State University (Unesp), Campus São José do Rio Preto
dc.identifierhttp://dx.doi.org/10.1007/s00028-020-00580-3
dc.identifier.citationJournal of Evolution Equations.
dc.identifier.doi10.1007/s00028-020-00580-3
dc.identifier.issn1424-3202
dc.identifier.issn1424-3199
dc.identifier.scopus2-s2.0-85084470811
dc.identifier.urihttp://hdl.handle.net/11449/198824
dc.language.isoeng
dc.relation.ispartofJournal of Evolution Equations
dc.sourceScopus
dc.subjectBlackstock–Crighton–Westervelt
dc.subjectResolvent families
dc.subjectWell-posedness
dc.titleWell-posedness for the abstract Blackstock–Crighton–Westervelt equationen
dc.typeArtigo
unesp.author.orcid0000-0002-9807-1100[2]

Arquivos

Coleções