Prediction via neural networks of the residual hydrogen peroxide used in photo-fenton processes for effluent treatment

Nenhuma Miniatura disponível

Data

2007-08-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Wiley-Blackwell

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

This communication proposes the use of neural networks in the prediction of residual concentrations of hydrogen peroxide from the treatment of effluents through Advanced Oxidative Processes (AOP's), in particular, the photo-Fenton process. To verify the efficiency of the oxidative process, the Chemical Oxygen Demand (COD) parameter, the values of which may be modified by the presence of oxidizing agents such as residual hydrogen peroxide, is frequently taken in account. The analysis of the H2O2 interference was performed by spectrophotometry at 450 nm wavelength, via the monitoring of the reaction of ammonia with metavanadate. The results of the hydrogen peroxide residual concentration were modeled via a feedforward neural network, with the correlation coefficients between actual and predicted values above 0.96, indicating good prediction capacity.

Descrição

Idioma

Inglês

Como citar

Chemical Engineering & Technology. Weinheim: Wiley-v C H Verlag Gmbh, v. 30, n. 8, p. 1134-1139, 2007.

Itens relacionados

Financiadores

Coleções